Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДАЮ: Декан

А. Г. Коротаев

Рабочая программа дисциплины

Материалы и структуры функциональной электроники и фотоники

по направлению подготовки

03.04.03 Радиофизика

Направленность (профиль) подготовки: Материалы и устройства функциональной электроники и фотоники

> Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП _И.А. Прудаев

Председатель УМК А.П. Коханенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1 Способен применять фундаментальные знания в области физики, радиофизики и радиоэлектроники для решения научно-исследовательских задач, в том числе в сфере педагогической деятельности;.

ОПК-3 Способен применять современные информационные технологии, использовать компьютерные сети и программные продукты для решения задач профессиональной деятельности..

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 1.1 Представляет современную научную картину мира, выявляет естественнонаучную сущность проблемы, формулирует задачи в области радиофизики и радиоэлектроники и определяет пути их решения

ИОПК 3.1 Осуществляет поиск научно-технической информации с использованием информационных технологий

2. Задачи освоения дисциплины

- Освоить понятийный аппарат в области материаловедения полупроводниковых структур и полупроводниковой электроники.
- Научиться применять понятийный аппарат для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 5 з.е., 180 часов, из которых:

-лекции: 18 ч.

-семинар: 16 ч.

в том числе практическая подготовка: 0 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Введение. Общие сведения о материалах электроники, электротехники и радиотехники.

Задачи изучения дисциплины. Электрические свойства твёрдых тел. Поляризация диэлектриков. Пассивные и активные диэлектрики. Проводниковые материалы. Полупроводники. Магнитные материалы.

Тема 2. Основные свойства полупроводниковых материалов.

Энергетический спектр электронов в полупроводниках. Носители заряда. Дрейф и диффузия носителей. рекомбинация электронов и дырок. Оптические свойства. Барьерные структуры. Основные полупроводниковые материалы.

Тема 3. Структуры кристаллов твёрдых тел.

Пространственные решётки. Элементы симметрии. Символы узла, направления, плоскости. Классы симметрии кристаллов. Примеры кристаллических структур твёрдых тел. Симметрия и анизотропия физических свойств кристаллов.

Тема 4. Химические связи в твёрдых телах.

Состояния электронов в атоме. Типы химической связи. Ионная связь и её свойства. Ковалентная и ионно-ковалентная связи. Металлическая связь. Молекулярная связь.

Тема 5. Дефекты кристаллической структуры.

Классификация дефектов. Точечные дефекты. Влияние точечных дефектов на свойства полупроводника. Краевая и винтовая дислокации. Контур и вектор Бюргерса. Дислокации в структурах алмаза и сфалерита. Влияние дислокаций на свойства полупроводников. Причины образования дислокаций.

Тема 6. Фазовые равновесия и фазовые диаграммы

Понятие о физико-химической системе. Термодинамическое равновесие. Правило фаз Гиббса. Фазовые диаграммы физико-химических систем. Расчёт и изображение состава в двухкомпонентной системе. Фазовые диаграммы двухкомпонентных систем.

Тема 7. Компенсированные полупроводники и структуры на их основе.

Понятие глубокого уровня. Проблема глубоких примесных уровней. Примеси переходных металлов в полупроводниках. Компенсация и самокомпенсация, степень компенсации. Уровень протекания в компенсированных полупроводниках. Основные свойства структур для детекторов ионизирующих излучений на основе компенсированного арсенида галлия. Структуры для быстродействующих импульсных переключателей на основе компенсированного арсенида галлия.

Тема 8. Широкозонные полупроводники и структуры на их основе.

Широкозонные полупроводниковые соединения. Нитриды галлия, алюминия и индия. Кристаллическая структура, симметрия решетки. Зонная структура. Спонтанная поляризация и пьезоэффект в гексагональных нитридах. Оптические и электрические свойства нитридов. Фосфиды галлия, алюминия, индия, их свойства. Оксид галлия. Гетероструктуры для излучающих приборов на основе широкозонных твёрдых растворов.

Тема 9. Нелинейно-оптические кристаллы.

Связь вектора поляризации с напряженностью электрического поля. Квадратичная и кубическая поляризация. Генерация электромагнитного поля волной поляризации. Условие согласования фаз. Генерация гармоник второго и третьего порядков. Свойства нелинейно-оптических кристаллов (GaSe, CdSiP₂) и их применение.

Тема 10. Поликристаллические полупроводники и структуры.

Поликристалл, кристаллиты и их границы раздела, энергетическая диаграмма поликристалла, закрепление уровня Ферми на границах раздела кристаллитов, электронная проводимость поликристаллов, уровень протекания. Структуры для сенсоров газа на основе поликристаллических полупроводников.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения устных опросов, выполнения лабораторных заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

В ходе контроля проверяется достижение обучающимися следующих результатов обучения: ИОПК-1.1 (Представляет современную научную картину мира, выявляет естественнонаучную сущность проблемы, формулирует задачи в области радиофизики и

радиоэлектроники и определяет пути их решения), ИОПК-3.1 (Осуществляет поиск научно-технической информации с использованием информационных технологий).

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в первом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа. В ходе контроля проверяется достижение обучающимися следующих результатов обучения: ИОПК-1.1 (Представляет современную научную картину мира, выявляет естественнонаучную сущность проблемы, формулирует задачи в области радиофизики и радиоэлектроники и определяет пути их решения), ИОПК-3.1 (Осуществляет поиск научно-технической информации с использованием информационных технологий).

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в электронном университете «Среда электронного обучения iDO».
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Пасынков В. В. Полупроводниковые приборы / Пасынков В. В., Чиркин Л. К. 9-е изд. Санкт-Петербург: Лань, 2021. 480 с. Электронный ресурс: ЭБС Лань (доступно в локальной сети ТГУ). URL: https://e.lanbook.com/book/167773
- 2. Рафиков Р. А. Электронные цепи и сигналы. Аналоговые сигналы и устройства / Р. А. Рафиков. 2-е изд., испр. Санкт-Петербург: Лань, 2022. 440 с. ISBN 978-5-8114-7607-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/230414
- 3. Сорокин, В.С. Материалы и элементы электронной техники. Проводники, полупроводники, диэлектрики : учебник / В.С. Сорокин, Б.Л. Антипов, Н.П. Лазарева. 2-е изд., испр. Санкт-Петербург: Лань, 2021. 448 с. ISBN 978-5-8114-2003-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/168852
- 4. Сорокин, В.С. Материалы и элементы электронной техники. Активные диэлектрики, магнитные материалы, элементы электронной техники: учебное пособие / В.С. Сорокин, Б.Л. Антипов, Н.П. Лазарева. 2-е изд., испр. Санкт-Петербург: Лань, 2021. 384 с. ISBN 978-5-8114-2002-5. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/168894

б) дополнительная литература:

1. Хлудков С.С., Толбанов О.П., Вилисова М.Д., Прудаев И.А. Полупроводниковые приборы на основе арсенида галлия с глубокими примесными центрами / под ред. О.П. Толбанова. – Томск: Издательский Дом Томского государственного университета, 2016. – 258 с.

- 2. Максимова Н.К. Полупроводниковые тонкопленочные газовые сенсоры / Н.К. Максимова, Е.Ю. Севастьянов, Н.В. Сергейченко, Е.В. Черников; Нац. исслед. Том. гос. ун-т. Томск: Издательство НТЛ, 2016. 163 с.
- 3. Гермогенов В.П. Материалы, структуры и приборы полупроводниковой оптоэлектроники: учебное пособие: для студентов старших курсов вузов / В.П. Гермогенов; Нац. исслед. Том. гос. ун-т. Томск: Издательский Дом Томского государственного университета, 2015. 271 с. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000511917.
- 4. Стафеев, С. К. Основы оптики / С. К. Стафеев, К. К. Боярский, Г. Л. Башнина. 2-е изд., испр. и доп.. Санкт-Петербург: Лань, 2021. 336 с. ISBN 978-5-8114-1495-6. Текст: электронный // Лань : электронно-библиотечная система. URL: http://e.lanbook.com/books/element.php?pl1_id=32822.
- 5. Готтштайн Г. Физико-химические основы материаловедения / Г. Готтштайн ; под ред. В.П. Зломанова ; пер. с англ. К.Н. Золотовой и Д.О. Чаркина. Москва: БИНОМ. Лаборатория знаний, 2016.-400 с.
- 6. Горелик С.С. Материаловедение полупроводников и диэлектриков: учебник для вузов / С.С. Горелик, М.Я. Дашевский. 2-е изд., перераб. и доп. Москва: МИСИС, 2003. 480 с.
- 7. Гаман В.И. Физика полупроводниковых газовых сенсоров / В.И. Гаман. Томск: Изд-во НТЛ, 2012.-112 с.
- 8. Шуберт Ф. Светодиоды / Шуберт Ф.; пер. с англ. под ред. Э.А. Юновича. 2-е изд. М.: ФИЗМАТЛИТ, 2008. 496 с.
- 9. Широкозонные полупроводники: учебное пособие для вузов / Ю.Г. Шретер, Ю.Т. Ребане, В.А. Зыков, В.Г. Сидоров ; под общ. ред. В.И. Ильина, А.Я. Шика. СПб: Наука, 2001.-123 с.
- 10. Шен И.Р. Принципы нелинейной оптики / И.Р. Шен, пер. с англ. И.Л. Шумая под редакцией С.А. Ахманова. Москва: Наука, Главная редакция физикоматематической литературы, 1989. 557 с.
 - в) ресурсы сети Интернет:
 - открытые онлайн-курсы
 - Научная электронная библиотека eLIBRARY.RU: https://www.elibrary.ru/
 - Электронный ресурс American Institute of Physics https://www.scitation.org/
 - Электронный ресурс American Physical Society https://journals.aps.org/
 - Электронный ресурс ScienceDirect: https://www.sciencedirect.com/
 - Электронный ресурс SpringerLink: https://link.springer.com/
 - Электронный ресурс SPIE Digital Library: https://www.spiedigitallibrary.org/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ –
 http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/

- ЭБС Консультант студента http://www.studentlibrary.ru/
- ЭБС ZNANIUM.com https://znanium.com/
- ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Гермогенов Валерий Петрович, доктор физико-математических наук, Томский государственный университет, профессор.

Прудаев Илья Анатольевич, кандидат физико-математических наук, Томский государственный университет, доцент.