Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДЕНО: Декан А. Г. Коротаев

Рабочая программа дисциплины

Основы конструирования и технологии производства РЭС

по направлению подготовки / специальности

11.05.01 Радиоэлектронные системы и комплексы

Направленность (профиль) подготовки/ специализация: **Программное обеспечение микропроцессорных систем**

Форма обучения **Очная**

Квалификация **Инженер-программист**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП С.Н. Торгаев

Председатель УМК А.П. Коханенко

Томск - 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 Способен выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и применять соответствующий физикоматематический аппарат для их формализации, анализа и принятия решения.
- ОПК-3 Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научно-технических задач в области радиоэлектронной техники и информационно-коммуникационных технологий.
- ОПК-4 Способен проводить экспериментальные исследования и владеть основными приемами обработки и представления экспериментальных данных.
- ОПК-5 Способен выполнять опытно-конструкторские работы с учетом требований нормативных документов в области радиоэлектронной техники и информационно-коммуникационных технологий.
- ОПК-6 Способен учитывать существующие и перспективные технологии производства радиоэлектронной аппаратуры при выполнении научно-исследовательских и опытно-конструкторских работ.
- ПК-4 Способен проводить оценку соответствия параметров систем связи требованиям технических регламентов, международных и национальных стандартов, рекомендаций и иных нормативных документов.
- ПК-5 Способен производить расчеты, необходимые для проектирования и эксплуатации оборудования систем связи и линий связи.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РООПК 2.3 Владеет приемами и методами решения проблемных задач профессиональной деятельности
- РООПК 3.1 Знает основные законы функционирования и процессы, происходящие в радиоэлектронных системах и комплексах
- РООПК 3.2 Умеет анализировать, моделировать и прогнозировать поведение радиоэлектронных систем и комплексов
- РООПК 3.3 Владеет навыками работы на современном измерительном и диагностическом оборудовании
- РООПК 4.1 Знает основные методы и средства проведения экспериментальных исследований
- РООПК 4.2 Умеет подбирать и использовать измерительное оборудование для проведения экспериментальных исследований
- РООПК 5.1 Знает нормативные документы, основные правила и методы для проектирования и конструирования электронной аппаратуры
- РООПК 5.2 Умеет решать проектно-конструкторские задачи в области аппаратуры радиоэлектронных систем
 - РООПК 6.1 Знает технологии производства радиоэлектронной аппаратуры
- РОПК 4.1 Знает технические регламенты и нормативные правовые акты в сфере связи
 - РОПК 4.2 Умеет осуществлять поиск необходимых требований к системам связи
 - РОПК 5.1 Знает этапы проектирования электронных блоков систем связи
 - РОПК 5.2 Умеет производить расчеты электронных блоков систем связи

2. Задачи освоения дисциплины

- Освоить приемы конструирования и технологии производства РЭС.
- Научиться применять понятийный аппарат для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)». Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Шестой семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Радиоэлектроника, Материалы и компоненты радиоэлектроники

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 32 ч.
- -практические занятия: 36 ч.
 - в том числе практическая подготовка: 36 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Раздел 1. Основные понятия и положения

Классификация РЭС; объекты-носители и условия эксплуатации РЭС, Системный подход как основа проектирования РЭС, Единая система конструкторской документации (ЕСКД), Показатели качества РЭС

Раздел 2. Элементная и конструктивная базы РЭС

Уровни функционального и конструктивного разукрупнения РЭС, Проектирование конструкций узлов І-го уровня (печатные платы), Основы теории надежности РЭС

Раздел 3. Основы защиты РЭС от внешних воздействий

Методы и средства обеспечения тепловых режимов РЭС, Методы и способы защиты от механических воздействий, Основы защиты РЭС от воздействия непреднамеренных помех, Основы защиты РЭС от воздействия ионизирующих излучений, Методы и способы влагозащиты

Раздел 4. Базовые технологические процессы в производстве РЭС

Основы теории технологических процессов создания РЭС, Единая система технологической документации

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, выполнения практических заданий, тестов по лекционному материалу, фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в шестом семестре проводится в форме защиты индивидуального проекта. Продолжительность зачета 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в электронном университете «IDO».
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Основы конструирования и технологии производства радиоэлектронных средств. Интегральные схемы: учебник для бакалавриата и магистратуры / Ю. В. Гуляев [и др.]; под ред. Ю. В. Гуляева. М.: Издательство Юрайт, 2019. 460 с.
- 2. Основы проектирования приборов и систем : учебник для бакалавров: /В. Ю. Шишмарёв; [Рос. гос. техн. ун-т им. К. Э. Циолковского]. М.: Юрайт, 2018.
- 3. Основы компьютерного проектирования и моделирования радиоэлектронных средств /М. П. Трухин. М.: Горячая Линия Телеком, 2021. 386 с.
- 4. Красников Г. Я. Общая теория технологий и микроэлектроника / Г. Я. Красников, Е. С. Горнев, И. В. Матюшкин. Москва : Техносфера, 2020. 433 с.
- 5. Микаева С. А. Современные электронные системы и устройства : монография / С. А. Микаева, А. С. Микаева. М.: Русайнс, 2020. 185 с.

б) дополнительная литература:

- 1. Теоретические основы конструирования, технологии и надежности радиоэлектронных средств: [учебник для вузов по специальностям "Конструирование и технология радиоэлектронных средств" и "Конструирование и технология электронных вычислительных средств"] /Ю. Н. Кофанов. М.: Радио и связь, 1991. 359 с. http://sun.tsu.ru/limit/2016/000379612/000379612.djvu
- 2. Физические основы конструирования и технологии РЭА и ЭВА: Учебное пособие для вузов по специальности "Конструирование и производство электронновычислительной аппаратуры" и "Конструирование и производство радиоаппаратуры" / Г. И. Епифанов, Ю. А. Мома. М.: Советское радио, 1979. 349 с.
- 3. Основы конструирования микроэлектронной аппаратуры / А. П. Ненашев, Л. А. Коледов.
- http://chamo.lib.tsu.ru/search/query?match_1=PHRASE&field_1=a&term_1=%D0%9D%D0%B5%D0%BD%D0%B0%D1%88%D0%B5%D0%B2,+%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80+%D0%9F%D0%B5%D1%82%D1%80%D0%BE%D0%B2%D0%B8%D1%87.+&theme=system M.: Радио и связь, 1981. 302 с.
- 4. Основы проектирования электронных средств: методические указания к курсовому проектированию /В. А. Илюшкин; ТМЦДО, ТУСУР, КИБЭВС. Томск: ТМЦДО, 2005. –155 с.
- 5. Основы проектирования приборов и систем / А. Г. Щепетов. http://chamo.lib.tsu.ru/search/query?match_1=PHRASE&field_1=a&term_1=%D0%A9%D0%

B5%D0%BF%D0%B5%D1%82%D0%BE%D0%B2,+%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80+%D0%93%D1%80%D0%B8%D0%B3%D0%BE%D1%80%D1%8C%D0%B5%D0%B2%D0%B8%D1%87++&theme=system М.: Академия, 2011. – 366 с.

6. Основы моделирования в SolidWorks: практический практикум / Том. гос. ун-т, Радиофиз. фак.; Ин-т мониторинга климатических иавтанные сисоматизиров экологических систем Сиб. отд-ния Рос. акад. наук ; [сост. Г. В. Симонова]. Томск, 2012. — 94 с.

Автоматизация проектирования радиоэлектронных устройств: учеб. пособие для вузов / О.В.Алексеев, А.А.Головков, И.Ю.Пивоваров и др.; Под ред. О.В.Алексеева. – М.: Высш. шк., 2000. – 479 с.

- в) ресурсы сети Интернет:
- открытые онлайн-курсы
- ЭУК LMS IDO «Основы конструирования и технологии производства РЭС 3курс (РФФ.С.1 сем.)» [Электронный ресурс] // Национальный исследовательский томский государственный университет.

ЭУК LMS IDO «Основы конструирования РЭС. Практика 3 курс (РФФ.С.1 сем.)» [Электронный ресурс] // Национальный исследовательский томский государственный университет.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 3FC ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Кочеткова Татьяна Дмитриевна, кандидат физ.-мат. наук, доцент каф. радиоэлектроники