Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Вычислительная математика

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

> Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1. Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-1.1. Применяет фундаментальные знания, полученные в области математических и (или) естественных наук.

ИОПК-1.2. Использует фундаментальные знания, полученные в области математических и (или) естественных наук в профессиональной деятельности.

ИОПК-1.3. Обладает необходимыми знаниями для исследования информационных систем и их компонент.

2. Задачи освоения дисциплины

- Освоить аппарат основ вычислительной математики.
- Научиться применять понятийный аппарат вычислительной математики для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы. Дисциплина входит в модуль «Математика».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Математический анализ, Алгебра и геометрия, Основы программирования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 32 ч.
- -лабораторные: 32 ч.
 - в том числе практическая подготовка: 0 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Приближенные числа. Теория погрешностей.

Краткое содержание темы. Понятие приближенного числа, абсолютная и относительная погрешности, предельные абсолютная и относительная погрешности. Основные источники погрешностей. Десятичная запись приближенного числа. Значащие цифры. Число верных знаков приближенного числа. Правила округления. Неустранимые погрешности, погрешность суммы, разности, произведения, частного. Потеря точности

при вычитании. Погрешность общей функциональной зависимости – прямая задача теории погрешностей. Обратная задача теории погрешностей

Тема 2. Вычисление значений функций

Краткое содержание темы. Вычисление значения полинома (схема Горнера). Приближенное нахождение суммы числовых рядов. Вычисление значений аналитических функций: экспоненты, показательной функции, логарифмической, тригонометрических функций, гиперболических функций. Интерактивные методы вычисления значений функций. Процесс Герона.

Тема 3. Приближенное решение алгебраических и трансцендентных уравнений

Краткое содержание темы. Понятие отделенного корня. Процесс отделения корней. Точность решения, общая формула для погрешности корня. Графический метод решения уравнения. Метод половинного деления (дихото-мия). Характеристики точности. Метод пропорциональных частей (метод хорд), характеристики точности. Метод Ньютона (касательных), характеристики точности. Комбинированные методы.

Тема 4. Приближенное решение систем нелинейных уравнений

Краткое содержание темы. Общая постановка и запись задачи. Метод простых итераций. Метод Ньютона, существование решения и сходимость.

Тема 5. Собственные числа и собственные вектора

Краткое содержание темы. Развертывание характеристического (векового) определителя. Понятие подобия матриц. Метод Данилевского. Метод вращений.

Тема 6. Решение систем линейных уравнений

Краткое содержание темы. Некоторые вопросы матричной алгебры: абсолютная величина и норма матриц, предел матрицы, матричные ряды, блочные матрицы, треугольные матрицы, представление неособенной матрицы через треугольные матрицы. Вычисление определителя матрицы. Метод Гаусса. Метод квадратных корней. Схема Холецкого. Метод итерации. Условие сходимости. Приведение системы к виду, допускающему использования метода итераций. Метод Зейделя. Метод релаксации. Сходимость итерационных методов решения систем линейных уравнений. Оценка погрешности приближений итерационного процесса.

Тема 7. Методы интерполирования функций

Краткое содержание темы. Постановка задачи интерполирования. Интерполяционная формула Лагранжа. Оценка погрешности. Определение сплайн функции одной переменной. Квадратичные сплайны одной переменной, применение к задаче интерполирования, локальные свойства, алгоритм построения.

Тема 8. Приближенное интегрирование

Краткое содержание темы. Понятие квадратурной формулы. Формула, на основе интерполяционного полинома Лагранжа. Квадратурные формулы Ньютона-Котеса. Формула Симпсона, ее точность. Квадратурная формула Чебышева. Квадратурная формула Гаусса. Приближенное вычисление несобственных интегралов. Вычисление двойных интегралов, понятие кубатурной формулы. Кубатурная формула Симпсона.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, выполнения лабораторных работ и фиксируется в форме контрольной точки не менее трех раз в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в третьем семестре проводится в письменной форме по билетам для студентов, получивших неудовлетворительную оценку по результатам текущего контроля успеваемости. Студент допускается к экзамену в случае, если он сдал все лабораторные работы. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в LMS iDo https://lms.tsu.ru/course/view.php?id=6342
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (https://www.tsu.ru/sveden/education/eduop/).
- в) Список лабораторных работ содержится в оценочных материалах текущего контроля (https://www.tsu.ru/sveden/education/eduop/). Текущий контроль по лабораторным работам осуществляется в виде обсуждения алгоритма и результатов его работы.
- г) Самостоятельная работа студентов по дисциплине организуется в следующих формах:
 - самостоятельное изучение основного теоретического материала, ознакомление с дополнительной литературой, Интернет-ресурсами;
 - подготовка к выполнению лабораторных работ.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Демидович Б. Основы вычислительной математики / Б.Демидович, И. Марон :- Учебник для вузов: 3-е изд. . испр.:- М. Наука. 1966. 664 с.
 - б) дополнительная литература:
- Основные методы вычислительной математики :учебное пособие / М.А.Фадеева, К.А. Марков. Санкт-Петербург: Лань, 2008. 154 с.
- Методы вычислений Т.1. [Учебное пособие для университетов] / И.С. Березин, Н.П. Жидков; Ред. Б.М. Будак. М. : Наука, Физматлит, 1960.-632 с.
- Методы вычислений Т.2. [Учебное пособие для университетов] / И.С. Березин, Н.П. Жидков; Ред. Б.М. Будак, А.Д. Горбунов М. : Физматлит, 1966. 620 с.
- Марчук Г.И. Методы вычислительной математики / Г.И. Марчук:- Главная редакция физ-мат литературы:- М. Наука. 1977 456 с.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint;
 - Microsoft Visual Studio;
 - MathCAD;
 - б) информационные справочные системы:

– Электронный каталог Научной библиотеки ТГУ – http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
– Электронная библиотека (репозиторий) ТГУ – http://vital.lib.tsu.ru/vital/access/manager/Index
– ЭБС Лань – http://e.lanbook.com/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа и аудитории для проведения лабораторных занятий.

Аудитория для проведения лекционных занятий должна быть оснащена мультимедийным оборудованием с доступом в интернет (проектор, экран, монитор, системный блок). Для проведения лабораторных занятий требуется наличие компьютерной техники с установленным соответствующим программным обеспечением. При освоении дисциплины используются компьютерные классы ИПМКН ТГУ с доступом к ресурсам Научной библиотеки ТГУ, в том числе отечественным и зарубежным периодическим изданиям и Интернета.

15. Информация о разработчиках

Романович Ольга Владимировна, канд. физ.-мат. наук, доцент кафедры теоретических основ информатики ТГУ;

Лапатин Иван Леонидович, канд. техн. наук, доцент кафедры прикладной информатики ТГУ.