Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Теория графов

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

Томск – 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1. Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-1.1. Применяет фундаментальные знания, полученные в области математических и (или) естественных наук.
- ИОПК-1.2. Использует фундаментальные знания, полученные в области математических и (или) естественных наук в профессиональной деятельности.
- ИОПК-1.3. Обладает необходимыми знаниями для исследования информационных систем и их компонент.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- коллоквиум по определениям и понятиям Теории графов;
- контрольная работа.

Примеры

Коллоквиум по определениям и понятиям (ОПК-1)

Список вопросов по определениям и понятиям:

- 1. Граф
- 2. Неориентированный граф
- 3. Ребро
- 4. Петля
- 5. Инцидентность вершины и дуги
- 6. Инцидентность дуг
- 7. Смежность вершин
- 8. Цепь
- 9. Путь
- 10. Цикл
- 11. Контур
- 12. Связность графа
- 13. Компонента связности
- 14. Дерево на графе
- 15. Покрывающее дерево
- 16. Разрез
- 17. Матрица инциденций графа
- 18. Матрица смежности графа

Примеры вопросов:

- 1. Покрывающее дерево графа
- 2. Матричное представление графа.

Ответы:

- 1. Покрывающим деревом графа G называется любое дерево, порождающее подграф, множество вершин которого совпадает с множеством вершин графа G.
- 2. Матрицей инциденций графа G называется матрица, состоящая из m строк, каждая из которых соответствует определенной вершине, и n столбцов, каждый из которых

соответствует определенной дуге. Элемент матрицы (i,j) равен: +1, если i-я вершина является начальной для j-й дуги; -1, если i-я вершина является конечной для j-й дуги; 0, если i-я вершина и j-я дуга не инцидентны.

Критерии оценивания: коллоквиум зачтен, если обучающийся ответил правильно как минимум на половину вопросов.

Контрольная работа (ИОПК-1.1, ИОПК-1.2, ИОПК-1.3)

Контрольная работа содержит два практических задания из разных разделов курса Темы заданий:

- 1. Построение неориентированного покрывающего дерева на графе.
- 2. Построение максимального (минимального) ориентированного покрывающего дерева на графе.
- 3. Алгоритм Форда построения дерева кратчайших путей из заданной вершины.
- 4. Задача поиска на графе всех кратчайших пути алгоритмом Флойда.

Примеры заданий:

1. Построить неориентированное покрывающее дерево минимального веса на графе, заданном следующей матрицей смежности:

	а	b	с	d	e	f	g	h	k	l	m	n
а		5	1	2	4							
b			1		7	6						
c					1							
d					1							
e						4	3					
f							6		10			
g								9			12	13
h											15	
k										7	3	
l												
m												8

2. Построить матрицу длин кратчайших путей методом Флойда в графе, заданном следующей матрицей кратчайших дуг:

$$D^0 = \begin{pmatrix} 0 & 3 & \infty & 2 \\ \infty & 0 & -1 & 4 \\ 2 & \infty & 0 & 5 \\ 1 & -3 & -3 & 0 \end{pmatrix}$$

Номера предпоследних дуг каждого полученного кратчайшего пути найти встроенным способом и указать верхним индексом при значении длины пути.

Ответы:

1. Матрица смежности покрывающего дерева минимального веса на заданном графе:

	а	b	c	d	e	f	g	h	k	l	m	n
а			1									
b			1									
С					1							
d					1							
e						4	3					

f					10			
g				9				
h								
k						7	3	
l								
m								8

Минимальный вес дерева на данном графе — $F^* = 48$.

2. Матрица длин кратчайших путей на заданном графе:

$$D^4 = \begin{pmatrix} 0 & -1^4 & -2^2 & 2 \\ 1^3 & 0 & -1 & 3^1 \\ 2 & 1^4 & 0 & 4^1 \\ -2^3 & -3 & -4^2 & 0 \end{pmatrix}.$$

Критерии оценивания:

Результаты контрольной работы определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется, если оба задания выполнены без ошибок.

Оценка «хорошо» выставляется, если одно из заданий выполнено верно, а в другом присутствует значительная ошибка, либо в обоих заданиях есть незначительные ошибки.

Оценка «удовлетворительно» выставляется, если выполнено только одно из заданий, либо в обоих выполненных заданиях присутствуют значительные ошибки.

Оценка «неудовлетворительно» выставляется, если не выполнены оба задания, либо выполнено только одно из заданий, но с грубой ошибкой.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Промежуточная аттестация проводится в виде зачета с оценкой. Зачет проводится по билетам в устной форме, т.е. студент письменно готовится, а затем устно отвечает. Продолжительность зачета 1 час.

Билет состоит из двух частей.

Первая часть содержит два вопроса из разных разделов дисциплины, проверяющих ИОПК-1.1. ИОПК-1.2, ИОПК-1.3. Ответы на вопросы даются в развернутой форме.

Вторая часть содержит один вопрос, проверяющий ОПК-1, оформленный в виде практической задачи. Ответ предполагает решение задачи и краткую интерпретацию полученных результатов. Если студент не пропустил ни одного занятия, выполнил все домашние практические задания и по каждому ответил на вопросы преподавателя, тем самым доказав самостоятельное выполнение, он освобождается от второй части билета – практического задания.

Перечень теоретических вопросов:

- 1. В чем суть алгоритма построения неориентированного покрывающего дерева.
- 2. Процедура алгоритма построения неориентированного покрывающего дерева.
- 3. Процедура алгоритма построения максимального ориентированного леса.
- 4. Как с помощью процедуры алгоритма построения максимального ориентированного леса строятся минимальный ориентированный лес, минимальное (максимальное) покрывающее ориентированное дерево, минимальное (максимальное) покрывающее ориентированное дерево с корнем в заданной вершине.

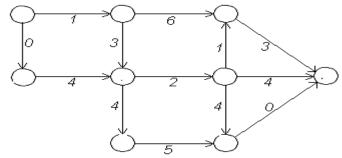
- 5. Процедура алгоритма Дейкстры поиска кратчайшего пути из одной заданной вершины в другую заданную вершину.
- 6. Алгоритма Форда модификация алгоритма Дейкстры.
- 7. Как определить наличие или отсутствие в рассматриваемом графе контуров отрицательной длины.
- 8. Процедура алгоритма Флойда поиска всех кратчайших путей на графе.
- 9. Определение последовательности дуг, составляющих кратчайший путь.
- 10. Встроенный способ определения номера предпоследней вершины кратчайшего пути из вершины i в вершину j.
- 11. Внешний способ определения номера предпоследней вершины кратчайшего пути из вершины i в вершину j.
- 12. Условия, которым должен удовлетворять поток из источника в сток.
- 13. Процедура алгоритма построения цепи, увеличивающей поток на графе (в сети).
- 14. Процедура алгоритма поиска максимального потока.
- 15. Как найти максимальный поток при нескольких источниках и стоках
- 16. Как формируется множество дуг, допустимых для использования, в процедуре алгоритма поиска потока минимальной стоимости.
- 17. Процедура алгоритма поиска потока минимальной стоимости.
- 18. Построение 1. От паросочетания к покрытию.
- 19. Построение 2. От покрытия к паросочетанию.
- 20. Алгоритм построения чередующегося дерева. Возможные результаты работы алгоритма построения чередующегося дерева.
- 21. Процедура алгоритма построения паросочетании максимальной мощности.

Примеры задач:

1. Задача поиска дерева кратчайших путей с корнем в заданной вершине.

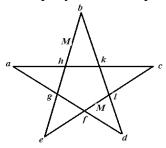
Построить с помощью алгоритма Форда дерево кратчайших путей из вершины s на графе, заданном следующей матрицей смежности:

, , ,	S	а	b	с	d	e	t
S	0	8	6	7	1	2	8
а	∞	0	∞	∞	∞	∞	2
b	8	3	0	∞	∞	8	8
c	8	8	1	0	∞	8	5
d	∞	∞	∞	2	0	∞	∞
e	∞	∞	∞	∞	3	0	∞
t	∞	8	∞	∞	∞	4	0


2. Задача поиска цепи, увеличивающей поток на графе.

Построить увеличивающую цепь на графе. В таблице перечислены дуги графа, пропускная способность каждой дуги и поток, протекающий в дугах:

Дуга	(s,a)	(s,b)	(s,c)	$\overline{(a,b)}$	$\overline{(a,d)}$	(b,c)	(c,d)	(c,e)	(d,b)	(d,e)	(d,t)	(e,t)
Пропускная способность дуги	5	7	9	3	6	6	13	7	3	4	20	5
Поток в дуге	0	3	3	0	0	3	2	4	0	1	1	5


3. Сетевое планирование.

На предложенном сетевом графике построить все критические пути, выделив их дуги каким-либо образом, с указанием наиболее ранних и наиболее поздних сроков наступления событий-вершин.

4. Чередующееся дерево на графе.

На представленном графе построить чередующееся дерево с корнем в вершине a.

Критерии оценивания:

Результаты зачета с оценкой определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется в случае, если студент верно выполнил практическое задание и исчерпывающе отвечает на все вопросы.

Оценка «хорошо» выставляется в случае, если студент верно выполнил практическое задание и в процессе ответа на вопросы допускает непринципиальные ошибки или неточности.

Оценка «удовлетворительно» выставляется в случае, если студент не выполнил практическое задание, либо выполнил неточно и в процессе ответа на вопросы делает грубые ошибки, но показывает понимание сути вопросов и правильно использует научную терминологию.

Оценка «неудовлетворительно» выставляется, если студент не выполнил практическое задание, не понимает сути вопросов, не знает целей алгоритмов, не владеет терминологией.

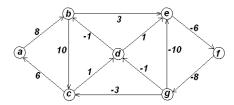
4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Задание 1 (ИОПК-1.1)

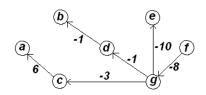
Покрывающее дерево на неориентированном графе Построить покрывающее дерево максимального веса на графе, заданном матрицей смежности:

	a	b	c	d	e	f	g	h	k	l	m	n
а		5	1	2	4							
b			1		7	6						
С					1							
d					1							
e						4	3					
f							6		10			
g								9			12	13
h											15	
k										7	3	
l												

m						8


Задание: Начать выполнение алгоритма – заполнить первые 5 строк таблицы:

Ответ:


Дуга	Вес	Цвет	Букет 1	Букет 2	Букет 3
(<i>h</i> , <i>m</i>)	15	г	h, m		
(g,n)	13	г		g, n	
(g,m)	12	г	g, n		
(f,k)	10	г		f, k	
(g,h)		0			

<u>Задание 2</u> (ИОПК-1.1)

Алгоритм построения максимального ориентированного леса на графе Построить покрывающее дерево минимального веса, используя алгоритм построения максимального ориентированного леса на следующем графе:

Ответ:

Вес полученного дерева $F^* = -17$.

Задание (ИОПК-1.1)

Алгоритма Форда построения дерева кратчайших путей на графе Построить дерево кратчайших путей из вершины s на графе, заданном следующей матрицей смежности:

	CHILL	• • • • • • • • • • • • • • • • • • • •										
		S	а	b	С	d	e	f	g	h	k	t
	S			1								
	а			7		2						
	b				5		4					
ſ	С							-4				
ſ	d						7		3			
ſ	e		-8		4					3		
Ī	f						1				2	
ſ	g									7		
ſ	h					2		1			-4	2
Ī	k											5
	t								4			

Задание: Начать выполнение алгоритма – выполнить первые 6 итераций (заполнить 6 столбцов таблицы):

Ответ:

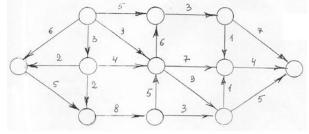
y:=	=		S	b	e	а	d	g		
S		0	_	_	_	_	_	_		
a		8	∞	∞	-3	_	_	_		

b	∞	1	_	_	_	_	_		
с	∞	∞	6	6	6	6	6		
d	∞	∞	8	8	-1	_	_		
e	∞	∞	5	_	_	_	_		
f	∞	∞	8	8	8	∞	∞		
g	∞	∞	8	∞	∞	2	_		
h	∞	∞	8	8	8	8	8		
k	8	8	8	8	8	∞	∞		
t	8	8	8	8	8	∞	∞		

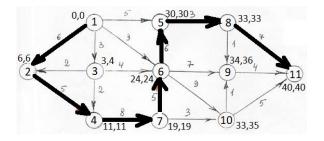
Задание 4 (ИОПК-1.1)

Алгоритма Флойда поиска всех кратчайших путей на графе Построить матрицу длин кратчайших путей методом Флойда в графе, заданном следующей матрицей кратчайших дуг:

$$D^{0} = \begin{pmatrix} 0 & 5 & \infty & \infty \\ -3 & 0 & 2 & -2 \\ \infty & -1 & 0 & \infty \\ 4 & \infty & 3 & 0 \end{pmatrix}$$


Номера предпоследних дуг каждого полученного кратчайшего пути найти встроенным способом и указать верхним индексом при значении длины пути. Ответ:

$$D^4 = \begin{pmatrix} 0 & 5 & 6^4 & 3^2 \\ -3 & 0 & 1^4 & -2 \\ -4^2 & -1 & 0 & -3^2 \\ -1^2 & 2^3 & 3 & 0 \end{pmatrix}$$


<u>Задание 5</u> (ИОПК-1.1)

Сетевое планирование.

На предложенном сетевом графике построить все критические пути, выделив их дуги каким-либо образом, с указанием наиболее ранних и наиболее поздних сроков наступления событий-вершин.

Ответ:

Теоретические вопросы:

1. Неориентированные деревья на графах (ИОПК-1.1)

Ответ должен содержать определения, виды неориентированных деревьев и способы их построения.

2. Максимальный ориентированный лес (ИОПК-1.3)

Ответ должен содержать определение максимального ориентированного леса, способы модификации алгоритма его построения для решения других задач.

3. Задача поиска на графе кратчайших путей (ИОПК-1.1)

Ответ должен содержать определения возможных видов кратчайших путей, перечисление алгоритмов решения для каждого случая, их сравнение.

4. Сетевое планирование (ИОПК-1.2)

Ответ должен содержать формальную постановку задачи, метод ее решения, интерпретацию возможных ответов.

5. Потоковые алгоритмы (ОПК-1)

Ответ должен содержать определения потоков, их виды, способы построения и принцип использования более простых алгоритмов в качестве процедур в более сложных алгоритмах.

6. Паросочетания и покрытия (ИОПК-1.3)

Ответ должен содержать определения паросочетания максимальной мощности и покрытия минимальной мощности, эквивалентность задач их построения, интерпретацию этих понятий.

Информация о разработчиках

Катаева София Семеновна, канд. тех. наук, доцент, кафедра прикладной математики института прикладной математики и компьютерных наук, доцент.