Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Квантовая электродинамика

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки: «Фундаментальная и прикладная физика»

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

 Π K-1 — Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК-1.1 Собирает и анализирует научно-техническую информацию по теме исследования, обобщает научные данные в соответствии с задачами исследования.
- ИПК-1.2 Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию изразличных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.
- ИПК-1.3 Владеет навыками аналитической переработки информации, проведения исследований с помощью современной аппаратуры и информационных технологий, обобщения и представления результатов, полученных в процессе решения задач исследования.

2. Задачи освоения дисциплины

- Освоить понятийный аппарат и методы квантовой теории поля.
- Научиться применять понятийный аппарат и методы квантовой теории поля для решения практических задач профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 1, зачет с оценкой.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для изучения и понимания материала данной дисциплины обучающийся должен владеть основными понятиями квантовой теория поля, методами математической физики, методами квантования систем со связями.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- лекции: 16 ч.;
- -практические занятия: 16 ч.;
- в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Введение. Сечение рассеяния. Борновское приближение.

Вывод формулы, связывающей инвариантную амплитуду рассеяния с дифференциальным сечением в системе центра масс. Борновский ряд.

Тема 2. Правила Фейнмана квантовой электродинамики.

Формулировка правил Фейнмана КЭД для S-матрицы в фейнмановской калибровке. Вывод свободного пропагатора фотона.

Тема 3. Кулоновский потенциал.

Рассеяние электрона на электроне в нерелятивистском пределе. Кулоновский потенциал.

Тема 4. Техника проекционных операторов. Следы гамма-матриц.

Энергетические и спиновые проекционные операторы. Свойства гамма-матриц.

Тема 5. Правила Каткосского и оптическая теорема.

Правила Каткосского на примере амплитуды рассеяния электрона на электроне. Доказательство оптической теоремы.

Tема 6. Аннигиляция электрон-позитронной пары в мюонную. Неполяризованные пучки.

Вычисление дифференциального сечения рассеяния аннигиляция электрон-позитронной пары в мюонную для неполяризованных пучков.

Tема 7 Аннигиляция электрон-позитронной пары в мюонную. Поляризованные пучки.

Вычисление дифференциального сечения рассеяния аннигиляция электрон-позитронной пары в мюонную для неполяризованных пучков в ультрарелятивистском пределе.

Тема 8. Кроссинг-симметрия. Примеры.

Доказательство кроссинг-симметрии амплитуд КТП. Примеры.

Тема 9. Мандельстамовские переменные

Определение мандельстамовских переменных и их свойства.

Тема 10. Комптоновское рассеяние. Суммирование по поляризациям фотонов. Тождество Уорда.

Вывод амплитуды комптоновского рассеяния. Суммирование по поляризациям фотонов вероятности перехода для произвольного процесса КЭД.

Тема 11. Комптоновское рассеяние. Формула Клейна-Нишины-(Тамма).

Вывод дифференциального сечения комптоновского рассеяния в лабораторной системе отсчета.

Тема 12. Аннигиляция пар в фотоны.

Вывод дифференциального сечения аннигиляции электрон-позитронной пары в два фотона Тема 13. БРСТ-квантование электромагнитного поля.

БФВ-квантование свободного электромагнитного поля в R кси калибровке. Построение БРСТ-заряда. Физические величины и состояния в фейнмановской калибровке.

Тема 14. Зарядовое сопряжение и теорема Фарри.

Определение зарядового сопряжения. Доказательство теоремы Фарри.

Тема 15. Сохранение заряда и тождества Уорда-Такахаши.

Доказательство обобщенных тождеств Уорда-Такахаши.

Тема 16. Полные электронные и фотонный пропагаторы. Условия нормировки и калибровочная инвариантность.

Общие свойства полных электронного и фотонного пропагатора. Условия нормировки и калибровочная инвариантность. Вычисление однопетлевой поправки к электронному и фотонному пропагаторам. Инфракрасные расходимости.

Тема 17. Полная вершина КЭД. Электромагнитные форм-факторы и аномальный магнитный момент электрона.

Определение полной вершины в КЭД. Физическая интерпретация форм-факторов. Вычисление однопетлевой поправки к полной вершине в КЭД.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится с применением балльно-рейтинговой системы, включающей контроль посещаемости, результаты выполнения контрольных работ, заданий и тестов по материалам курса, и фиксируется в форме баллов (нарастающим итогом): посещаемость — максимальный балл 10, выполнение контрольных заданий — 40, тестов — 10. Контрольная точка проводится не менее одного раза в семестр. Контрольная точка проводится не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет с оценкой в 1 семестре проводится в устной форме по билетам.

Результаты зачета определяются оценкой, исходя из результатов ответов на экзамене (60%) и текущей аттестации в течение семестра (40%) в соответствии с балльной шкалой оценивания: количество набранных баллов более 80 — «отлично», от 65 до 79 — «хорошо», от 50 до 64 — «удовлетворительно, менее 50 баллов — «неудовлетворительно».

Билет состоит из двух частей.

Первая часть содержит основной вопрос, проверяющий сформированность компетенций ИПК-1.1, ИПК-1.2, ИПК-1.3. Ответы даются в развернутой форме, включая практические задачи.

Вторая часть содержит дополнительный вопрос из списка контрольных вопросов по курсу (приведен в разделе 11), проверяющий соответствие индикатору достижения компетенций ИПК-1.1, ИПК-1.2, ИПК-1.3. Ответ на вопрос второй части дается в краткой форме, включающей краткую интерпретацию полученных результатов.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронные учебные курсы по дисциплине в электронном университете «Moodle»: https://moodle.tsu.ru/course/view.php?id=25865
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских занятий по дисциплине.
 - д) Банк задач для самостоятельного решения по темам практических занятий.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. L.S. Brown, Quantum Field Theory. -- Cambridge: University Press, 1992. -- 542 p.
- 2. С. Вайнберг, Квантовая теория поля. т.1. Общая теория. -- М.: Физматлит, 2003. -- 648 с.
- 3. Дж. Бьёркен, С. Дрелл, Релятивистская квантовая теория. т. 1. Релятивистская квантовая механика. -- Н.: ИО НФМИ, 2000. -- 296 с.
- 4. К. Ициксон, Ж.-Б. Зюбер, Квантовая теория поля. т. 1. -- М.: Мир, 1984. -- 448 с.
- 5. А.И. Ахиезер, В.Б. Берестецкий, Квантовая электродинамика. т. 1. -- М.: Физматлит, 1981. -- 428 с.
- 6. В.Б. Берестецкий, Е.М. Лифшиц, Л.П. Питаевский, Квантовая электродинамика. М.: Физматлит, 1989. -- 728 с.
- 7. М.Е. Пескин, Д.Е. Шрёдер, Введение в квантовую теорию поля. -- Ижевск: НИЦ "Регулярная и хаотическая механика", 2001. -- 784 с.

- 8. Н.Н. Боголюбов, Д.В. Ширков, Введение в теорию квантованных полей. -- М.: Физматлит, 1984. -- 600 с.
- 9. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems. -- Princeton, New Jersey: Princeton University Press, 1992. -- 521 p.

б) дополнительная литература:

- 1. V.G. Bagrov, D.M. Gitman, Exact Solutions of Relativistic Wave Equations, (Kluwer Acad. Pub., Dordrecht, 1990).
- 2. Д.М. Гитман, Е.С. Фрадкин, Ш.М. Шварцман, Квантовая электродинамика с нестабильным вакуумом. М.: Физматлит, 1989. 296 с.
- 3. Е.М. Лившиц, Л.П. Питаевский, Статистическая физика. ч. 2. Теорик конденсированного состояния. М.: Физматлит, 2004. 496 с.
- 4. B.S. DeWitt, Quantum field theory in curved spacetime, Phys. Rep. 19, 295 (1975).
- 5. M. Antezza, L.P. Pitaevskii, S. Stringari, V.B. Svetovoy, Casimir-Lifshitz force out of thermal equilibrium, Phys. Rev. A 77, 022901 (2008).
- 6. B.S. DeWitt, The Global Approach to Quantum Field Theory. Vol. 1 and 2 (Claredon Press, Oxford, 2003).
- 7. D.V. Vassilevich, Heat kernel expansion: user's manual, Phys. Rep. **388**, 279 (2003), hep-th/0306138.
 - в) ресурсы сети Интернет:

http://arxiv.org База электронных препринтов: разделы hep-th, hep-ph.

http://chair.itp.ac.ru/biblio/lectures/qedn.pdf Лекции по квантовой электродинамике, читаемые в МФТИ.

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_14_15/TVI_TMP-TB1_-Quantum-Electrodynamics/vorlesung/index.html. Лекции по квантовой электродинамике, читаемые в университете Людвига-Максимилиана, Мюнхен.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook); системы компьютерной вёрстки LaTex;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного типа, практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате, оснащенные системой («Актру»).

15. Информация о разработчиках

Казинский Петр Олегович, доктор физико-математических наук, доцент, кафедра квантовой теории поля физического факультета ТГУ, профессор.