Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Основы прикладной магнитной гидродинамики

по направлению подготовки

24.04.03 Баллистика и гидроаэродинамика

Направленность (профиль) подготовки: **Баллистика ракетно-ствольных систем**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2023**

СОГЛАСОВАНО: Руководитель ОПОП К.С. Рогаев

Председатель УМК В.А. Скрипняк

Томск – 2023

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ПК-1 Способен к проведению работ по обработке и анализу научно-технической информации и результатов исследований.
- ПК-2 Способен применять знания на практике, в том числе составлять математические модели профессиональных задач, находить способы их решения и интерпретировать профессиональный (физический) смысл полученного математического результата.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК 1.1 Знает методы анализа научных данных
- ИПК 1.2 Умеет применять актуальную нормативную документацию в соответствующей области знаний.
- ИПК 1.3 Осуществляет организацию сбора и изучения научно-технической информации по теме исследований и разработок
- ИПК 2.1 Знает математическое описание законов баллистики и гидроаэродинамики.
- ИПК 2.2 Умеет составлять математические модели профессиональных задач и находить способы их решения
- ИПК 2.3 Осуществляет анализ и интерпретацию результатов математического моделирования

2. Задачи освоения дисциплины

- Овладение студентами основами прикладной магнитной гидродинамики и приобретение профессиональных методологических навыков применения полученных знаний для решения практических задач, связанных с профилем будущей специальности и смежными направлениями исследований;
- Овладение возможностями и навыками дистанционного управления потоками электропроводных сред с помощью электромагнитных полей;
- Конкретизация полученных знаний при изучении функциональных возможностей некоторых МГД -устройств, включая высокоскоростные магнитогазодинамические ускорители твердых тел заданной массы и формы;
- Овладение на примере плазменных ускорителей особенностями оптимального проектирования МГД -устройств, в том числе для задач баллистического проектирования.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Второй семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 10 ч.
- -практические занятия: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

- **Тема 1.** Особенности (МГД) процессов. Возможности прямого дистанционного управления электропроводными средствами с помощью электромагнитных полей. Основная система МГД—уравнений в интегральном виде.
- **Тема 2.** Основные конфигурации МГД-течений. Основные безразмерные критерии магнитной гидродинамики. Граничные и «внешние условия».
- **Тема 3.** Свойства электропроводных газов. Ионизация и рекомбинация. Уравнение Саха. Импульсные ускорители плазмы.
- **Тема 4.** Методология построения электротехнических моделей МГД–процессов в импульсных ускорителях плазмы. МГД–генераторы электрической энергии. Электрогазодинамические ускорители твердых тел.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет во втором семестре проводится в письменной форме. Продолжительность зачета с оценкой 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=22476
- б) Оценочные материалы текущего контроля и промежуточной аттестации по лисшиплине.
 - в) План практических занятий по дисциплине.
 - г) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Старовиков М. И. Введение в экспериментальную физику: учебное пособие / М. И. Старовиков. СПб. [и др.]: Лань, 2016. 235 с. Режим доступа ЭБС Лань: https://e.lanbook.com/book/379#book name
- 2. Методология научных исследований в авиа- и ракетостроении: учебное пособие / В. И. Круглов, В. И. Ершов, А. С. Чумадин, В. В. Курицына. М.: Логос, 2011. 431 с.

- 3. Строгалев В. П. Имитационное моделирование: [учебное пособие для вузов по специальности 170400 "Стрелково-пушечное, артиллерийское и ракетное оружие"] / В. П. Строгалев, И. О. Толкачева. М.: Издательство МГТУ им. Н Э. Баумана, 2015. 295 с.
- 4. Рыжаков В. В. Стохастические методы идентификации и оценивания характеристик средств измерения / В. В. Рыжаков, М. В. Рыжаков; под ред. В. В. Рыжакова. М.: Физматлит, 2015. 141 с.
 - б) дополнительная литература:
- 1. Дж. Саттон, А. Шерман. Основы технической магнитной газодинамики. М.: Издво «Мир», 1968, 492 с.
- 2. Р. Роза. Магнитогидродинамическое преобразование энергии. М.: Изд-во «Мир», 1970, 288 с.
- 3. Брановер Г.Г. Магнитная гидродинамика несжимаемых сред / Г.Г. Брановер, А.Б. Цинобер. М.: Изд-во «Наука», 1970. 379 с.
- 4. Архипов В.А. Основы теории инженерно-физического эксперимента: учебное пособие / .А. Архипов, А.П. Березиков. Томск: Изд-во Томского политех. ун-та, 2008. 206 с.
- 5. Медведева Н.П. Экспериментальная баллистика. Ч.1 Учебное пособие. Томск: Том. ун-т. 2006.-172с.
 - в) ресурсы сети Интернет:

Все виды информационных ресурсов Научной библиотеки ТГУ. Информационные источники сети Интернет.

- Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ— http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий практического типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Степанов Евгений Юрьевич, ассистент кафедры Динамики полета ФТФ.