Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Рабочая программа дисциплины

Биохимия животных

по направлению подготовки

06.03.01 Биология

Направленность (профиль) подготовки: **Биология**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.В. Ярцев

Председатель УМК А.Л. Борисенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-2 Способен применять принципы структурно-функциональной организации, использовать физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания.

ПК-1 Способен участвовать в исследовании биологических систем и их компонентов, планировать этапы научного исследования, проводить исследования по разработанным программам и методикам, оптимизировать методики под конкретные залачи.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-2.1 Демонстрирует понимание принципов структурно-функциональной организации живых систем
- ИОПК-2.2 Использует физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания
- ИПК-1.1 Применяет полевые и лабораторные методы исследования биологических объектов с использованием современной аппаратуры и оборудования в соответствии с поставленными задачами

2. Задачи освоения дисциплины

- Знать принципы клеточной организации биологических объектов, биохимических основ, мембранных процессов и молекулярных механизмов жизнедеятельности.
 - Уметь использовать полученные знания в биологических исследованиях
- Уметь эксплуатировать современную аппаратуру для практического применения и выполнения лабораторных и научно-исследовательских работ.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Четвертый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования. Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: «Общая и неорганическая химия», «Аналитическая химия», «Органическая химия», «Физика», «Математика». Дисциплина «Биохимия животных» является логическим продолжением в цепи дисциплин по принципу «от простого к более сложному», и сама является основой для углубленного изучении специальных дисциплин.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 5 з.е., 180 часов, из которых:

-лекции: 32 ч.

- -лабораторные: 48 ч.
- -семинары: 14 ч.

в том числе практическая подготовка: 48 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. ВВЕДЕНИЕ

Биохимия животных, как наука о веществах, входящих в состав животных организмов, и их превращениях, лежащих в основе жизненных явлений. Роль и место биохимии в системе естественных наук. Значение биохимии животных для промышленности, сельского хозяйства и медицины. Краткая история биохимии животных.

Биохимические основы важнейших биологических явлений. Обмен веществ как важнейшая особенность живой материи. Структура животной клетки и биохимическая характеристика отдельных субклеточных компонентов.

Тема 2. АМИНОКИСЛОТЫ И БЕЛКИ

Биологическая роль белков, значение в построении организма животных и в процессе жизнедеятельности. Аминокислоты, их химические, физико-химические свойства и классификация. Заменимые и незаменимые аминокислоты. Способы связи аминокислот в белке. Роль пептидных, дисульфидных, ионных, гидрофобных и водородных связей в формировании структуры белков. Первичная, вторичная, третичная и четвертичная структура белков. Альфа-спираль и бета-структура. Домены в структуре белка, их функциональная роль. Денатурация белков. Принципы классификации белков. Глобулярные и фибриллярные белки. Классификация белков по третичной структуре. Формирование трехмерной структуры белков в клетке. Структура и функциональная роль шаперонов в фолдинге белков. Роль шаперонов в защите белков клеток от денатурирующих стрессовых воздействий. Амилоидозы. Физико-химические свойства белков. Простые и сложные белки. Функциональная классификация белков. Методы выделения и разделения белков. Качественные реакции на белки.

Тема 3. ФЕРМЕНТЫ

Сущность явления катализа. Скорость химических реакций. Общие представления о механизме ферментативного катализа. Особенности ферментативного Термодинамические и кинетические характеристики ферментативного Классификация и номенклатура ферментов. Химическая природа ферментов, их функциональные группы. Активный и аллостерический центры. Коферменты, простетические группы. Роль витаминов, металлов И других кофакторов функционировании ферментов. Множественные формы ферментов. Изоферменты. Специфичность действия ферментов. Влияние различных факторов ферментативные процессы (температуры, концентрации водородных ионов и др.). Влияние ингибиторов на ферментативную активность. Принципы регуляции ферментативных процессов в клетке и регуляция метаболизма. Локализация ферментов в клетке.

Тема 4. НУКЛЕИНОВЫЕ КИСЛОТЫ

Роль нуклеиновых кислот в формировании и свойствах живой материи. Строение нуклеиновых кислот. Пуриновые и пиримидиновые основания. Углеводные компоненты. Нуклеозиды. Нуклеотиды. ДНК. Биологическое значение двухспирального строения ДНК. Физико-химические свойства ДНК. Принцип комплементарности и его биологическая роль. Репликация ДНК. РНК. Структура, свойства и функции основных классов РНК - информационных, рибосомальных, транспортных. Матричный синтез РНК - транскрипция и постранскрипционные превращения РНК. РНК - вещество наследственности некоторых вирусов. Обратная транскрипция. Участие ферментов в распаде, синтезе и функционировании нуклеиновых кислот. Обмен пуриновых и пиримидиновых оснований.

Тема 5. БИОСИНТЕЗ БЕЛКА

Основные этапы биосинтеза белка. Активация аминокислот. Образование аминоацил-тРНК. Функции информационных РНК в синтезе белка. Рибосомы, их строение и функции в синтезе белка. Полисомы. Процесс трансляции на рибосомах. Посттрансляционные превращения белков. Самоорганизация белковой глобулы. Самосборка четвертичной структуры белка и надмолекулярных структур клетки. Организация генома у прокариот и эукариот. Генетический код, его характеристика. Регуляция биосинтеза белков.

Тема 6. ОБМЕН БЕЛКОВ

Ферментативный гидролиз белков. Протеолитические ферменты, их специфичность, активация. Ограниченный протеолиз. Пути образования и распада аминокислот в организме. Переаминирование, его механизм, биологическое значение. Процессы дезаминирования и декарбоксилирования аминокислот. Образование аммиака. Транспорт аммиака. Восстановительное аминирование. Амиды и их физиологическое значение. Особенности обмена отдельных аминокислот и их роль в образовании ряда важнейших биологически активных веществ. Биосинтез мочевины. Азотистые небелковые вещества, их синтез, распад и биологическая роль.

Тема 7. УГЛЕВОДЫ

Углеводы и их биологическая роль, классификация и номенклатура. Структура, свойства и распространение в природе основных представителей моносахаридов и полисахаридов. Гликопротеины и гликолипиды. Взаимопревращения моносахаридов. Анаэробный и аэробный распад углеводов. Гликолиз. Спиртовое и молочнокислое брожение. Биосинтез полисахаридов. Гликозил-трансферазные реакции. Глюконеогенез. Окислительное декарбоксилирование пировиноградной кислоты. Пируватдегидрогеназный комплекс. Цикл трикарбоновых кислот. Фосфорилирование на уровне субстрата. Энергетическая характеристика аэробной и анаэробной фаз углеводного обмена. Прямое окисление глюкозо-6-фосфата. Пентозофосфатный путь обмена углеводов, его биологическая роль.

Тема 8. БИОЭНЕРГЕТИКА

Макроэргические соединения. Нуклеозидфосфаты, ATP, креатинфосфат и аргининфосфат. Пути образования ATP и других макроэргических соединений. Окислительное фосфорилирование. Окислительно-восстановительные процессы. Цепь переноса водорода и электронов (дыхательная цепь). Энергетическое значение ступенчатого транспорта электронов от субстратов окисления к кислороду. NAD- и NADP-зависимые дегидрогеназы. Флавиновые ферменты, убихинон, цитохромы и цитохромоксидаза. Окислительное фосфорилирование в дыхательной цепи. Представление о механизмах сопряжения окисления и фосфорилирования в дыхательной цепи. Митохондрии, структура и энергетические функции. Трансмембранный потенциал ионов водорода как форма запасания энергии.

Тема 9. ЛИПИДЫ

Липиды и их биологическая роль. Классификация и номенклатура липидов. Структура, свойства и распространение в природе. Основные представители триглицеридов, фосфолипидов, цереброзидов, стеринов и восков.

Жирные кислоты, их классификация и номенклатура. Простагландины. Ферментативный распад и синтез липидов. Окисление жирных кислот, биосинтез жирных кислот. Мультиферментный комплекс синтетазы жирных кислот.

Тема 10. ВИТАМИНЫ

Витамины и их биологическая роль. Классификация, номенклатура, структура, свойства, распространение в природе. Водорастворимые витамины. Жирорастворимые витамины.

Темы и программы семинарских занятий

Семинар №1

«Введение в биохимию. Аминокислоты»

Биохимия как наука о веществах, входящих в состав живой природы, и их превращениях, лежащих в основе жизненных явлений. Роль и место биохимии в системе естественных наук. Классификация биохимии. Значение биохимии для промышленности, сельского хозяйства и медицины. Краткая история биохимии. Биохимические основы важнейших биологических явлений. Признаки живой материи. Методология биохимии

Аминокислоты и белки. Биологическая роль белков, значение в построении живой материи и в процессе жизнедеятельности. Классификация аминокислот Химические и. физико-химические свойства. Амфотерность аминокислот. Способы определения и разделения аминокислот: цветные реакции на аминокислоты, электрофорез, ионообменная хроматография.

Семинар №2

«Белки»

Способы связи аминокислот в белке. Роль пептидных, дисульфидных, ионных, гидрофобных и водородных связей в формировании структуры белков. Первичная, вторичная, третичная и четвертичная структура белков. Альфа-спираль и бета-структура. Домены в структуре белка, их функциональная роль. Физико-химические свойства белков. Методы выделения и разделения белков. Денатурация белков.

Принципы классификации белков. Простые и сложные белки. Функциональная классификация белков. Глобулярные и фибриллярные белки. Классификация белков по третичной структуре. Формирование трехмерной структуры белков в клетке. Структура и функциональная роль шаперонов в фолдинге белков. Роль шаперонов в защите белков клеток от денатурирующих стрессовых воздействий. Заболевания, связанные с нарушением фолдинга белков. Амилоидозы.

Семинар №3

«Энзимология»

Классификация и номенклатура ферментов. Химическая природа ферментов, их функциональные группы. Специфичность действия ферментов. Влияние различных факторов среды на ферментативные процессы (температуры, pH и др.)

Активный и аллостерический центры. Коферменты, простетические группы. Роль витаминов, металлов и других кофакторов в функционировании ферментов. Множественные формы ферментов. Изоферменты.

Влияние ингибиторов на ферментативную активность. Регуляция активности ферментов. Антибиотики. Локализация ферментов в клетке.

Сущность явлений катализа. Скорость химических реакций. Механизм и особенности ферментативного катализа. Термодинамические и кинетические характеристики ферментативного катализа. Уравнение Михаэлиса-Ментен. Кинетические кривые в прямых координатах и линеаризованной форме (Лайнуивера-Берка и Эдди-Хофсти).

Семинар №4

«Нуклеиновые кислоты. Биосинтез белков»

Роль нуклеиновых кислот в формировании и свойствах живой материи. Состав и строение нуклеиновых кислот: пуриновые и пиримидиновые основания, углеводные компоненты, нуклеозиды, нуклеотиды.

ДНК. Биологическое значение двухспирального строения ДНК. Физико-химические свойства ДНК. Принцип комплементарности и его биологическая роль. Репликация ДНК.

РНК. Структура, свойства и функции основных классов РНК - информационных, рибосомальных, транспортных. Матричный синтез РНК - транскрипция и постранскрипционные превращения РНК. РНК - вещество наследственности некоторых вирусов. Обратная транскрипция.

Основные этапы биосинтеза белка. Активация аминокислот. Образование аминоацилтРНК. Функции информационных РНК в синтезе белка.

Рибосомы, их строение и функции в синтезе белка. Процесс трансляции на рибосомах. Посттрансляционные превращения полипептидов: самоорганизация белковой глобулы, самосборка четвертичной структуры белка и надмолекулярных структур клетки.

Организация генома у прокариот и эукариот. Генетический код, его характеристика. Регуляция биосинтеза белков.

Семинар №5

«Обмен белков и аминокислот»

Ферментативный гидролиз белков. Протеолитические ферменты, их специфичность, активация. Ограниченный протеолиз. Пути образования и распада аминокислот в организме. Переаминирование, его механизмы, биологическое значение. Процессы дезаминирования и декарбоксилирования аминокислот. Образование аммиака. Транспорт аммиака. Биосинтез мочевины.

«Строение, свойства и метаболизм углеводов»

Биологическая роль, классификация и номенклатура углеводов. Структура (формулы), свойства и распространение в природе основных представителей моносахаридов (рибоза, дезоксирибоза, глюкоза, галактоза, фруктоза) и олигосахаридов (сахароза, лактоза). Химический состав, распространение в природе и биологическое значение сложных углеводов крахмал, гликоген, целлюлоза, хитин, гепарин, гиалуроновая и хондроитинсерная кислоты, глюкозамин, галактозамин, ацетилнейраминовая кислота.

«Гликолиз». Спиртовое и молочнокислое брожение.

«Глюконеогенез». Окислительное декарбоксилирование пировиноградной кислоты. Пируватдегидрогеназный комплекс.

Пентозофосфатный путь обмена углеводов, его биологическая роль, связь с гликолизом.

Семинар №6

«Биоэнергетика». Макроэргические соединения. Нуклеозидфосфаты. Аденозинтрифосфат (ATP). Креатинфосфат и аргининфосфат. Пути образования ATP и других макроэргических соединений. Окислительно-восстановительные процессы.

Цикл Кребса. Энергетическая характеристика аэробной и анаэробной фазы углеводного обмена.

«Окислительное фосфорилирование». Цепь переноса водорода и электронов (дыхательная цепь). Энергетическое значение ступенчатого транспорта электронов от субстрата окисления к кислороду. NAD- и NADP-зависимые дегидрогеназы. Флавиновые ферменты. Убихинон. Цитохромы и цитохромоксидаза. Представление о механизмах сопряжения окисления и фосфорилирования в дыхательной цепи. Хемиосмотическая теория сопряжения Митчела.

Семинар №7 «Витамины»

Классификация, номенклатура, структура, свойства, распространение в природе, биологическая роль витаминов. Водорастворимые витамины. Жирорастворимые витамины.

Липиды и их биологическая роль. Классификация и номенклатура липидов. Структура, свойства и распространение в природе. Жирные кислоты, их классификация и номенклатура. Ферментативный распад и синтез липидов. Окисление жирных кислот. Биосинтез жирных кислот. Мультиферментный комплекс синтетазы жирных кислот.

Темы и примерное содержание практических (лабораторных) занятий

Работа №1.

«Вводное занятие».

Техника безопасности при работе в биохимической лаборатории. Оборудование и посуда для биохимических исследований. Концентрации растворов: молярная, нормальная, массовые и объемные проценты. Расчеты для приготовления растворов веществ с заданной концентрацией.

Работа №2.

«Белки»

Получение животного белка яичного альбумина; приготовление раствора желатина. Цветные реакции на обнаружение и свойства белков: биуретовая, ксантопротеиновая, реакция Адамкевича, реакция на серосодержащие аминокислоты.

Работа №3

«Реакции осаждения белков»

Осаждение белков: при кипячении, солями тяжелых металлов, неорганическими и органическими кислотами, алкалоидами.

Работа №4

«Разделение альбуминов и глобулинов методом высаливания»

Получение солевых вытяжек белков. Высаливание белков хлористым натрием, сернокислым магнием и сернокислым аммонием.

Работа №5

«Получение и свойства ферментов»

Выделение и определение специфичности β-Фруктофуранозидазы дрожжей и α-амилазы слюны. Влияние активаторов, ингибиторов и рН среды на активность α-амилазы. Обнаружение уреазы и каталазы.

Работа №6

«Ферментативная кинетика»

Решение задач, построение кинетических кривых в прямых координатах и линеаризованной форме (Лайнуивера-Берка и Эдди-Хофсти) и вычисление кинетических параметров ферментов графическим методом.

Работа №7

«Выделение ДНП из тканей животных. Качественная реакция на ДНК»

Препарование наркотизированной крысы, извлечение селезенки и тимуса и выделение из них ДНП методом центрифугирования. Цветная реакция из выделенного ДНП на дезоксирибозу с дифениламином.

Работа №8

«Качественная реакция на сахара»

Реакция Троммера, реакция серебряного зеркала, реакция с пикриновой кислотой, реакция Молиша, реакция Фелинга с сахарозой до и после гидролиза, нитрохромовая реакция, тимоловаяпроба.

Работа №9

«Липиды»

Физико-химические свойства липидов: получение эмульсии липидов, получение жидкого мыла и реакции с ним — высаливание, разложение минеральными кислотами, получение нерастворимых мыл. Качественные реакции на желчные кислоты. Гидролиз липидов молока липазой, активация липазы желчью.

Работа №10

«Витамины»

Количественное определение свободной и связанной аскорбиновой кислоты в овощах и фруктах титриметрическим методом по восстановлению 2,6-дихлорфенолиндофенола.

Работы №11 и 12

«Итоговое занятие»

Индивидуальные задания по проверке практических навыков, приобретенных во время лабораторных работ.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в четвертом семестре проводится в устной форме по билетам. Экзаменационный билет состоит из трех вопросов.

Критерии оценивания ответов на экзамене включают глубину и полноту знаний, умение использовать терминологию, логичность изложения и способность аргументировать ответы. Оценки выставляются по 4-х балльной системе:

- «Отлично» глубокое и полное усвоение материала, четкие, аргументированные ответы, владение терминологией, самостоятельность при ответе.
- «Хорошо» полное знание основного материала, но с небольшими неточностями или затруднениями при ответе на дополнительные вопросы.
- «Удовлетворительно» знание основных разделов, но с неточностями, недостаточной полнотой или нарушениями последовательности.
- «Неудовлетворительно» незнание существенной части материала, грубые ошибки, неспособность ответить на основные и дополнительные вопросы, отказ от ответа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=415
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине размещены на сайте ТГУ в разделе «Информация об образовательной программе» https://www.tsu.ru/sveden/education/eduop/

12. Перечень учебной литературы и ресурсов сети Интернет

а) основная литература:

Нельсон Д., Кокс М. Основы биохимии Ленинджера. Том 1. Основы биохимии. Строение и катализ. – М.: Бином. Лаборатория знаний, 2022, 746 с.

Нельсон Д., Кокс М. Основы биохимии Ленинджера. Том 2. Биоэнергетика и метаболизм. – М.: Бином. Лаборатория знаний, 2022, 689 с.

Нельсон Д., Кокс М. Основы биохимии Ленинджера. В 3 томах. Том 3. Пути передачи информации. – М.: Бином. Лаборатория знаний, 2022, 441 с.

Биологическая химия: Учебник / А.И. Глухов, С.Е. Северин, Т.Л. Алейникова, С.А. Силаева. — 4-е изд., испр. и доп. — Москва: ООО «Издательство «Медицинское информационное агентство», 2023. — 504 с.: ил.

Биохимия с упражнениями и задачами: Учебник/ Под ред.Е.С.Северина, А.И.Глухова.-М.:ГЭОТАР-Медиа, 2019. - 384 с. (в НБ ТГУ – 4-е изд.2005)

б) дополнительная литература:

Страйер Л. Биохимия: В 3-х т.- М.: Мир, 1981.

Р.Марри, Д.Греннер, и др. Биохимия человека: В 2-х т.- М.: Мир, 1993.

Албертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки: В 3-х т., 2013.

Кнорре Д.Г., Мызина С.Д. Биологическая химия: Учеб. для хим., биол. и мед. спец. вузов.— М.: Высш. шк. 2002.

Ю. Б. Филиппович, Н. И. Ковалевская, Г. А. Севастьянова и др.; Биологическая химия (уч. пособие для студентов биологических спец. вузов). под ред. Н. И. Ковалевской – М., Академия, 2008, 254 с.

в) ресурсы сети Интернет:

Нельсон, Д. Основы биохимии Ленинджера : учебное пособие : в 3 томах / Д. Нельсон, М. Кокс ; перевод с английского под редакцией Н. Б. Гусева. — 5-е изд. (эл.). — Москва : Лаборатория знаний, 2022 — Том 1 : Основы биохимии, строение и катализ — 2022. — 746 с. — ISBN 978-5-93208-607-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/319169 (дата обращения: 11.01.2025). — Режим доступа: для авториз. пользователей.

Нельсон, Д. Основы биохимии Ленинджера: учебное пособие: в 3 томах / Д. Нельсон, М. Кокс; перевод с английского под редакцией Н. Б. Гусева. — 5-е изд. (эл.). — Москва: Лаборатория знаний, 2022 — Том 2: Биоэнергетика и метаболизм — 2022. — 689 с. — ISBN 978-5-93208-608-7. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/319172 (дата обращения: 11.01.2025). — Режим доступа: для авториз. пользователей.

Нельсон, Д. Основы биохимии Ленинджера : учебное пособие : в 3 томах / Д. Нельсон, М. Кокс ; перевод с английского под редакцией Н. Б. Гусева. — 5-е изд. (эл.). — Москва : Лаборатория знаний, 2022 — Том 3 : Пути передачи информации — 2022. — 441 с. — ISBN 978-5-93208-609-4. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/319175 (дата обращения: 11.01.2025). — Режим доступа: для авториз. пользователей.

https://biokhimija.ru/ (дата обращения: 11.01.2025) - БИОХИМИЯ для студента

https://e.lanbook.com/book/385898 (дата обращения: 11.01.2025). — Режим доступа: для авториз. пользователей..

Брещенко, Е. Е. Биохимия: введение в обмен веществ. Обмен энергии и углеводов: учебное пособие для вузов / Е. Е. Брещенко, К. И. Мелконян; под редакцией И. М. Быков. — Санкт-Петербург: Лань, 2024. — 120 с. — ISBN 978-5-507-48573-4. — Текст: электронный // Лань: электронно-библиотечная система.

Комов, В. П. Биохимия: учебник для вузов / В. П. Комов, В. Н. Шведова; под общей редакцией В. П. Комова. — 4-е изд., испр. и доп. — Москва: Издательство Юрайт, 2024. — 684 с. — (Высшее образование). — ISBN 978-5-534-13939-6. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/543995 (дата обращения: 11.01.2025).

С компьютеров сети ТГУ данные издания доступны без пароля.

Для работы с ними с домашнего компьютера (вне сети ТГУ) необходимо настроить удаленный доступ к нашим электронным ресурсам: https://ez.lib.tsu.ru/login

Для активации доступа потребуется ввести номер читательского билета и пароль.

Для получения доступа к полному спектру возможностей ЭБС «Лань» необходимо зарегистрироваться в базе: https://e.lanbook.com/help#Private

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office 2021 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа с мультимедийным оборудованием.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лаборатория, оборудованная для проведения практических занятий по курсу, оснащенная лабораторной мебелью, вытяжным шкафом, компьютером, спектрофотометром, центрифугами, различными весами, раковиной с горячей и холодной водой.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешанном формате («Актру»).

15. Информация о разработчиках

Кувшинов Николай Николаевич, кафедра физиологии человека и животных Биологического института ТГУ, старший преподаватель.