Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Рабочая программа дисциплины

Биоэнергетика

по направлению подготовки

06.03.01 Биология

Направленность (профиль) подготовки: **Биология**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема 2025

> СОГЛАСОВАНО: Руководитель ОП В.В. Ярцев

Председатель УМК А.Л. Борисенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины «Биоэнергетика» является формирование следующих компетенций:

- ОПК-2 Способен применять принципы структурно-функциональной организации, использовать физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания
- ПК-1 Способен участвовать в исследовании биологических систем и их компонентов, планировать этапы научного исследования, проводить исследования по разработанным программам и методикам, оптимизировать методики под конкретные задачи.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-2.1. Демонстрирует понимание принципов структурно-функциональной организации живых систем
- ИОПК-2.2. Использует физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания.
- ИПК-1.1 Применяет полевые и лабораторные методы исследования биологических объектов с использованием современной аппаратуры и оборудования в соответствии с поставленными задачами.

2. Задачи освоения дисциплины

- Изучить механизмы запасания, трансформации и передачи энергии в клетке, их количественных аспект и методики изучения
- Научиться применять понятийный аппарат описания и расчётов биоэнергетических процессов для решения практических задач профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Профессиональный модуль «Физиология человека и животных».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Восьмой семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: «Физика», «Химия», «Биохимия», «Физиология человека и животных», «Биофизика». Дисциплина «Биоэнергетика» является логическим продолжением в цепи дисциплин по принципу «от простого к более сложному», и сама является основой для углубленного изучении специальных дисциплин.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 з.е., 72 часов, из которых:

- лекции: 20 ч.;
- семинарские занятия: 14 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

TEMA 1. Иерархия биоэнергетических процессов. Виды энергии. Трофическая структура экосистемы. Перемещение вещества по пищевым цепям. Перемещение энергии по пищевым цепям. Цепи выедания и детритные цепи. Пирамиды энергии в экологических системах. Понятие валовой и чистой первичной продуктивности.

ТЕМА 2 Энергетика целого организма Общие черты и разница анаболизма и катаболизма. Понятия ассимиляции и диссимиляции. Механизмы регуляции метаболизма. Уровни взаимосвязи между катаболизмом и анаболизмом. Основные этапы распада углеводов, белков и жиров.

ТЕМА 3. Основы термодинамики неравновесных процессов Понятия термодинамической системы, термодинамического равновесия. Внутренняя энергия системы. Формы передачи энергии в живых системах. Свободная энергия живых систем и её свойства. Типы химической связи. Энергия активации образования и разрыва слабых химических связей. Откуда берется свободная энергия в биологических системах и как с ее помощью совершается работа? Сопряженные процессы. Условия сопряжения химических реакций.

TEMA 4. Законы биоэнергетики Разнообразие путей превращения энергии в живых клетках. Законы биоэнергетики. Отличия энергетики растительной клетки от энергетики животной клетки.

ТЕМА 5. Центральная роль адениловой системы в энергетике клеток. Роль АТФ в клеточной энергетике. Строение молекулы АТФ. Основные «статьи расходов» АТФ в клетке. Макроэргические соединения. Структура и представители. Низкоэнергетические фосфат-органические соединения. Принцип общего промежуточного продукта. Два важных способа синтеза АТФ, которые реализуются по всех клетках. Классификация ферментов.

ТЕМА 6. Энергетический метаболизм животной клетки. Этапы энергетического обмена. Аэробные и анаэробные пути получения энергии. Последовательность подключения механизмов анаэробного и аэробного энергообразования у животных. Масштабы работы электронтранспортной цепи и АТФ-синтазы митохондрий

ТЕМА 7. Гликолиз. Стадии гликолиза. Лимитирующие гликолиз условия. Последовательность участия ферментов в реакциях гликолиза. Особенности протекания гликолиза в клетках в присутствии кислорода и в его отсутствие. Энергетический выход гликолиза

TEMA 8. Цикл трикарбоновых кислот, глиоксилатный цикл, гексозомонофосфатный шунт. Цикл трикарбоновых кислот. Его функции в клетках. Глиоксилатный цикл. Отличия от ЦТК. Его функции в клетках. Функции гексозомонофосфатного шунта в клетках.

ТЕМА 9. Дыхательная цепь митохондрий, теория хемиосмотического сопряжения. Общее понятие о строении и функционировании дыхательной цепи. Характеристика компонентов дыхательной цепи: комплекс 1 и комплекс 11, комплекс 111 и комплекс 1V, убихинон и цитохром С. Схема последовательных окислительно-восстановительных реакций при переносе электронов и протонов с участием промежуточных переносчиков. Особенности электронтранспортных цепей бактерий. Сопряженные строения окислительно-восстановительные пары В ЭТЦ. Окислительно-восстановительный потенциал компонентов дыхательной цепи. Изменение стандартной свободной энергии в реакции, связанной с переносом электронов. Направление потока электронов и энергетические соотношения в дыхательной цепи. Вещества, подавляющие окислительное фосфорилирование. Специфические ингибиторы, блокирующим определенные этапы цепи. Величины, характеризующие эффективность

фосфорилирования. Акцепторный контроль дыхания. Строение комплекса F0F1 и образование АТФ. Основные положения хемиосмотической теории сопряжения. Экспериментальные доказательства хемиосмотической теории сопряжения. Синтетические ионы. Особенности процесса окислительного фосфорилирования свидетельствующие в пользу хемиосмотической гипотезы. Альтернативное использование энергии протонного градиента. Митохондрии и старение организма.

TEMA 10. Биохемилюминесценция. Понятие биолюминесценция. Процессы, лежащие в основе биолюминсценции. Люциферины и люциферазы разных организмов. Белок GFP, его особенности функционирования и перспективы использования. Роль биохемилюминесценции в реализации биологических функций.

ТЕМА 11. Структура воды в биологических системах, Солитоны. Коллективные процессы. Солитон. Потребление и преобразование энергии посредством солитона. Понятие молекулярной ячейки. Отличия живой и неживой молекулярных ячеек. Фрактал. Принцип единства целого при свободе частей. Концепция молекулярной ячейки как основной единицы живого.

ТЕМА 12. Дискуссионные вопросы современной биоэнергетики

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения творческих домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет проводится в устной форме по билетам. Билет содержит три теоретических вопроса. Продолжительность зачета 1,5 часа.

Формирование ИОПК-2.1., ИПК-2.2. отражается в подготовленных студентом докладах к семинарским занятиям по темам:

- 1. Тема. Центральная роль адениловой системы в энергетике клетки. План семинара:
- а) Роль АТФ в клеточной энергетике; б) Особенности строения ТАФ, делающие ее универсальной молекулой в клеточной энергетике; в) Сравнения величин энергии АТФ и высоко- и низкоэнергетических фосфаторганических соединений; г) Макроэргические соединения: особенности строения и передачи энергии; д) Анализ использования энергии АТФ в реакциях метаболизма; е) Пути ферментативного переноса фосфатных групп.
- 2. **Тема** .Начальные (подготовительные) реакции энергетического обмена в клетке. План семинара: а) Анализ этапов энергетического обмена на разных уровнях организации; б) Сравнение аэробных и анаэробных путей получения энергии; в) Рассмотрение последовательности подключения механизмов анаэробного и аэробного энергообразования; г) Масштабы работы электронтранспортной цепи и АТФ-синтазы митохондрий
- **3. Тема.** Гликолиз. План семинара: а) Анализ условий протекания реакций гликолиза и поиск «узкого места» б) Анализ особенностей протекания гликолиза в аэробных и анаэробных условиях в) Расчет энергетического выхода гликолиза.
- **4**. Тема Цикл трикарбоновых кислот. План семинара: а) Общий порядок реакций цикла Кребса; б) Анализ стадий ЦТК; в) Глиоксилатный цикл; г) Фосфоглюконатный путь передачи энергии;

ИПК-1.1. формируется при подготовке к семинарам по темам: «Перенос электронов в дыхательной цепи и окислительное фосфорилирование». План семинара: а) Утилизация высвобождаемой энергии в пунктах энергетического сопряжения; б) Характеристика компонентов дыхательной цепи; в) Схема последовательных

окислительно-восстановительных реакций при переносе электронов и протонов с участием промежуточных переносчиков; г) Анализ особенностей строения электронтранспортных цепей бактерий; а также к теме «Хемиосмотическая теория сопряжения». План семинара: а) Содержание хемиосмотической теории Питера Митчела; б) Обоснование доказательств в пользу хемиосмотической теории сопряжения; в) Возможности альтернативного использования протонного градиента. Тесты проверяют общую готовность студента к применению индикаторов компетенций ИОПК-2.1., ИОПК-2.2., и ИПК-1.1.

Если набрано меньше 85 % баллов от максимально возможной суммы, то студент сдает устный зачет по билетам. Каждый билет содержит 3 теоретических вопроса, ответ на которые отражает освоение студентом индикаторов ИОПК-2.1., ИОПК-2.2., и ИПК-1.1. Продолжительность зачета 1 час.

Вопросы к зачету по дисциплине «Биоэнергетика»

ИОПК-2.1. Демонстрирует понимание принципов структурно-функциональной организации живых систем

- 1. Определение понятий биосфера, биологическая жизнь, живое вещество
- 2. Пирамиды энергии в экологических системах
- 3. Специфика живого вещества. Основные функции живого вещества
- 4. Трофическая структура экосистемы
- 5. Перемещение энергии по пищевым цепям Цепи выедания и детритные цепи
- 6. Понятие валовой и чистой первичной продуктивности
- 7. Откуда берется свободная энергия в биологических системах и как с ее помощью совершается работа?
- 8. Типы химической связи. Энергия активации образования и разрыва слабых химических связей
- ИОПК-2.2. Использует физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания.
- 9. Уровни взаимосвязи между катаболизмом и анаболизмом Общие черты и разница анаболизма и катаболизма
 - 10. Сопряженные процессы. Условия сопряжения химических реакций
 - 11. Свободная энергия живых систем и её свойства
 - 12. Основные этапы распада углеводов, белков и жиров
 - 13. Механизмы регуляции метаболизма
 - 14. Внутренняя энергия системы. Формы передачи энергии в живых системах
 - 15. Протонный и натриевый потенциалы
 - 16. Разнообразие путей превращения энергии в живых клетках
 - 17. Роль АТФ в клеточной энергетике. Строение молекулы АТФ
- ИПК-1.1 Применяет полевые и лабораторные методы исследования биологических объектов с использованием современной аппаратуры и оборудования в соответствии с поставленными задачами.
 - 18. Первый закон биоэнергетики
 - 19. Второй закон биоэнергетики
 - 20. Третий закон биоэнергетики
 - 21. Основные «статьи расходов» АТФ в клетке
- 22. Макроэргические соединения. Структура и представители. Низкоэнергетические фосфат-органические соединения
 - 23. Отличия энергетики растительной клетки от энергетики животной клетки
 - 24. Этапы энергетического обмена
- 25. Последовательность подключения механизмов анаэробного и аэробного энергообразования у животных
 - 26. Биологическое значение процесса гликолиза. Суммарное уравнение
 - 27. Аэробные и анаэробные пути получения энергии

- 28. Стадии гликолиза. Последовательность участия ферментов в реакциях гликолиза
- 29. Лимитирующие гликолиз условия
- 30. Глиоксилатный цикл; его функции. Отличия от ЦТК.
- 31. Цикл трикарбоновых кислот. Его функции в клетках
- 32. Функции гексозомонофосфатного шунта в клетках
- 33. Масштабы работы электронтранспортной цепи и АТФ-синтазы митохондрий
- 34. Окислительное фосфорилирование. Суть и смысл этого процесса
- 35. Особенности протекания гликолиза в клетках в присутствии и отсутствии кислорода
 - 36. Принцип общего промежуточного продукта
 - 37. Способы образования АТФ в клетках
 - 38. Электронтранспортная цепь митохондрий строение и функции
 - 39. Классификация ферментов
 - 40. Перенос элеткронов по дыхательной цепи и окислительное фосфорилирование
- 41. Ингибиторы, блокирующие перенос электронов в дыхательной цепи Гидравлическая модель дыхательной цепи
 - 42. Хемиосмотическая теория Питера Митчелла.
- 43. Высвечивание энергии окислительно-восстановительных реакций в виде биолюминесцентного излучения
 - 44. Общие представления об АФК
 - 45. Антиоксидантная защита клеток.
 - 46. Митохондрии и старение организма

Критерии оценивания:

Оценка	Критерии оценки
Не зачтено	Нет ответа даже на общие вопросы
Зачтено	Неполный ответ на все вопросы, полный развернутый или частично неполный ответ на все вопросы

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=1601
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине, представленные в соответствующем курсе «iDO».
- В)План семинарских занятий по дисциплине, представленный в соответствующем курсе «iDO» (Центральная роль адениловой системы в энергетике клетки -2 часа, Начальные /подготовительные реакции энергетического обмена в клетке 2 часа, гликолиз 2 часа, цикл трикарбоновых кислот 2 часа, перенос электронов в дыхательной цепи и окислительное фосфорилирование 2 часа, хемиосмотическая теория сопряжения -2 часа, дискуссионные вопросы современной биоэнергетики 2 часа.)
- г) Методические указания по организации самостоятельной работы студентов, представленные в соответствующем курсе «iDO».

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Большаков М.А., Жаркова Л.П. Мембранные процессы физиологический и биофизический аспекты. Учебное пособие. 2011.

- Жаркова Л.П., Большаков М.А. Основы энергетики живых систем. Учебное пособие. Томск: ТГУ. 2013. 164с.
- Мембранная биоэнергетика: /В. П. Скулачев, А. В. Богачев, Ф. О. Каспаринский Москва: Изд-во Московского университета, 2012 367 с.
 - б) дополнительная литература:
- Артюхов В.Г. и др. Биофизика. Учебник для ВУЗов. М: Академический проект, 2013. 294c.
- Журавлёв А.И. Квантовая биофизика животных и человека: учебное пособие. М: БИНОМ. Лаборатория знаний, 2011-398 с.
- Ванаг В.К. Диссипативные структуры в реакционно-диффузионных системах. Эксперимент и теория. М: ИКИ, 2008. 300 с.
 - Ярославцев А.Б. Мембраны и мембранные технологии. М: Научный мир, 2013. 612с.
- Джаксон М.Б. Молекулярная и клеточная биофизика. М: Мир; БИНОМ. Лаборатория знаний, 2012-551 с.
- Рубин А.Б. Биофизика: в 3-х томах. (1т. Теоретическая биофизика. 472 с.; 2 т. Биофизика клеточных процессов. Биофизика мембранных процессов. 384 с.; 3 т. Биофизика клеточных процессов. Механизмы первичных фотобиологических процессов. 480 с.). М: ИКИ, 2013.
- Л.Н.Галль, Н.Р.Галль. Новый подход к проблеме биоэнергетики новые методы исследований в науках о жизни. Научное приборостроение, 2008, т.18, №2, с.52-60.
- Л.Н.Галль, Н.Р.Галль. Механизм межмолекулярной передачи энергии ивосприятия сверхслабых воздействий химическими и биологическими системами. Биофизика, 2009, т.54, №3, с.563-574.
 - Л. Галь Биоэнергетика магия жизни М: АСТ; СПб.: Астрель-СПб, 2010. 349с.
- Альберте Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. 2-е изд. -М.: Изд-во «Мир», 1994. Т.1.
- Скулачев В.П. Законы биоэнергетики// Соровский общеобразовательный журнал. 1997. №1. С 9-14
- Тихонов А.Н. Молекулярные преобразователи энергии в живой клетке// Соровский образовательный журнал. 1997. №2. С 10-17
 - Энергия, секс, самоубийство. Митохондрии и смысл жизни. Ник Лэйн 2016, 368
- В. П. Скулачев Как это делалось: о тех, кто создавал современную науку. Москва: Изд-во Московского университета, 2010. 220 с.
- Биохимия: [учебник для студентов медицинских вузов /Т. Л. Алейникова, Л. В. Авдеева, Л. Е. Андрианова и др.]; под ред. Е. С. Северина М.: ГЭОТАР-Медиа, 2005. 779 с.
- Скулачев В.П. Кислород в живой клетке: добро и зло// Соровский общеобразовательный журнал. 1996. №3. С 4-16.
 - Скулачев В.П. Энергетика биологических мембран. М.: Изд-во «Наука», 1989.
- Николс Д.Дж. Биоэнергетика. Введение в хемиосмотическую теорию. М.: Изд-во «Мир», 1986
- Медицинская и биологическая физика: [учебное пособие для студентов учреждений высшего образования по медицинским специальностям] /В. Г. Лещенко, Г. К. Ильич
- Рубин А.Б. Биофизика: в 2-х томах. Т.2. Биофизика клеточных процессов: Учебник— М.: МГУ имени М.В.Ломоносова, 2004. 480 с.
- А. Камкин, И. Киселева Физиология и молекулярная биологи мембран клеток 2008. 592 стр.
 - в) ресурсы сети Интернет:

- <u>https://postnauka.ru/video/70630</u>
 Открытая лекция молекулярного биолога Ричарда Хендерсона, платформа Постнаука
- https://postnauka.ru/video/40273 Открытая лекция А.Я. Мулкиджанян, д.б.н., профессора факультета биоинженерии и биоинформатики, с МГУ им. М. В. Ломоносова. Биоэнергетические механизмы и их эволюция, платформа Постнаука
- https://openedu.ru/course/msu/BIOPHY/ Открытый курс Биофизика. Максимов Г.В., д.б.н., профессор МГУ имени М.В. Ломоносова, Платформа Открытое образование

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Жаркова Любовь Петровна, к.б.н., доцент, кафедра физиологии человека и животных НИ ТГУ.