Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Теория элементарных частиц

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки: «Фундаментальная и прикладная физика»

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ИПК-1.1 Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости.
- ИПК-1.2 Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.
- ИПК-1.3 Владеет навыками аналитической переработки информации, проведения исследований с помощью современной аппаратуры и информационных технологий, обобщения и представления результатов, полученных в процессе решения задач исследования.

2. Задачи освоения дисциплины

- Освоить понятийный аппарат и методы теории элементарных частиц.
- Научиться применять понятийный аппарат и методы теории элементарных частиц. для решения практических задач профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 2, зачет с оценкой.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для изучения и понимания материала данной дисциплины обучающийся должен владеть основными понятиями и методами квантовой механики, квантовой теория поля, методами математического анализа, математической физики, линейной алгебры и теории групп.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- лекции: 16 ч.;
- практические занятия: 16 часов.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Введение. Кинематика элементарных частиц. Основные понятия. Распады, сечения, распределения. Вывод формул для времени жизни частицы и дифференциального сечения рассеяния двух частиц. Методы вычислений интегралов по фазовому объему. Эксклюзивные и инклюзивные процессы. Решение задач.

Тема 2. Кварковая модель. Составные модели адронов. Квантовые числа адронов. Вывод формул для магнитных моментов барионов. Решение задач.

- Тема 3. Теоретические и экспериментальные предпосылки возникновения КХД. Получениие формул для ширины распада нейтрального пиона в пару фотонов и для отношений сечений электрон-позитронной аннигиляции в кварки и лептоны.
- Тема 4. Лагранжиан КХД. Цветная симметрия КХД. Калибровочные схемы в КХД. Правила Фейнмана. Вывод формул для пропагатора глюона в различных калибровках.
- Тема 5. Киральная симметрия. Аномалии и структура вакуума КХД. Голдстоуновский механизм нарушения киральной симметрии в КХД.
- Тема 6. Симметрия Изгура-Вайзе в секторе тяжелых кварков. Эффективная теория тяжелых кварков. Форм-факторы полулептонных распадов тяжелых мезонов и барионов с изменением аромата тяжелых кварков. Решение задач.
- Тема 7. Перенормировка КХД в одной петле. Размерная регулляризация. Асимптотическая свобода и ренормгруппа. Бегущие константа связи КХД и массы кварков. Решение задач.
- Тема 8. Фундаментальные процессы в пертурбативной КХД. Коллинеарные и мягкоимпульсные расходимости в КХД. Инфракрасная стабильность в КХД. Глубоко-неупругое рассеяние в КХД. Электрон-позитронное рассеяние в адроны. Процессы Дрелла-Яна. Полуинклюзивные процессы глубоко-неупругого рассеяния в КХД. Функции распределения кварков и глюонов в адронах. Решение задач.
- Тема 9. Феноменология слабых взаимодействий. Основы модели Вайнберга-Салама (единой модели электрослабых взаимодействий). Матрица смешивания кварков Кабиббо-Кобаяси-Маскава. Механизм Хиггса (спонтанное нарушения симметрии электрослабых взаимодействий). Распады бозона Хиггса. Решение задач.
- Тема 10. SU(5) модель великого объединения. Бегущая константа взаимодействия. Нарушение барионного, лептонного числа и лептонного аромата. Механизм Хиггса. Распад протона.
- Тема 11. Физика нейтрино. Дираковское и Майорановское нейтрино. Двойной бетараспад. Осцилляции нейтрино. Матрица смешивания нейтрино Понтекорво-Маки-Накагава-Саката. Решение задач.
- Тема 12. Основные идеи построения лагранжианов и гамильтонианов эффективных теорий. Правила степенного счета. Устранение расходимостей. Связь с КХД.
- Тема 13. Киральная пертурбативная теория (КПТ). Лагранжиан КПТ (линейная и нелинейная реализация). Явное и спонтанное нарушение киральной симметрии, массовый член, кварковый конденсат. Прозводящий функционал КХД. Перенормировка в КПТ (контр-члены и низкоэнергетические константы).
- Тема 14. КХД в пределе большого количества цветов. Лагранжиан и инвариантные матричные элементы. Скейлинг констант связи и масс адронов.
- Тема 15. Нерелятивсткие приближения в КХД и КЭД. Разложение лагранжиана нерелятивисткой КХД по степеням обратных масс тяжелых кварков.
- Тема 16. Эффективные теории, основанные на бозонизации в КХД. Лагранжиан и производящий функционал. Условие связности Вайнберга-Салама. Критическая константа связи.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится с применением балльно-рейтинговой системы, включающей контроль посещаемости, результаты выполнения контрольных работ, заданий и тестов по материалам курса, и фиксируется в форме баллов (нарастающим итогом): посещаемость — максимальный балл 10, выполнение контрольных заданий -40, тестов -10. Контрольная точка проводится не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет с оценкой во 2 семестре проводится в устной форме по билетам.

Результаты зачета определяются оценкой, исходя из результатов ответов на экзамене (60%) и текущей аттестации в течение семестра (40%) в соответствии с балльной шкалой оценивания: количество набранных баллов более 80 — «отлично», от 65 до 79 — «хорошо», от 50 до 64 — «удовлетворительно, менее 50 баллов — «неудовлетворительно».

Билет состоит из двух частей.

Первая часть содержит основной вопрос, проверяющий сформированность компетенций ИПК-1.1, ИПК-1.2, ИПК-1.3. Ответы даются в развернутой форме, включая практические задачи.

Вторая часть содержит дополнительный вопрос из списка контрольных вопросов по курсу (приведен в разделе 11), проверяющий соответствие индикатору достижения компетенций ИПК-1.1, ИПК-1.2, ИПК-1.3. Ответ на вопрос второй части дается в краткой форме, включающей краткую интерпретацию полученных результатов.

Примерный перечень теоретических вопросов билета:

Вопрос 1. Глубоко-неупругое рассеяние в КХД. Функции распределения кварков и глюонов в адронах.

Дополнительные вопросы.

Вопрос 1. Что такое инфракрасная стабильность в КХД.

Вопрос 2. Как реализуется Голдстоуновский механизм нарушения киральной симметрии в КХД.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронные учебные курсы по дисциплине в электронном университете «Moodle»: https://moodle.tsu.ru/course/view.php?id=25865
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

Перечень вопросов, выносимых на зачет во 2 семестре.

- 1. Время жизни частицы и дифференциального сечения рассеяния двух частиц.
- 2. Фазовый объем распада на 2 частицы.
- 3. Фазовый объем распада на 3 частицы.
- 4. Кварковая модель.
- 5. Составные модели адронов.
- 6. Квантовые числа адронов.
- 7. Магнитные моменты барионов.
- 8. Аномальный распад нейтрального пиона.
- 9. Отношение сечений электрон-позитронной аннигиляции в кварки и лептоны
- 10. Лагранжиан КХД.
- 11. Цветная симметрия КХД.
- 12. Калибровочные схемы в КХД.
- 13. Вывод формул для пропагатора глюона в различных калибровках.
- 14. Киральная симметрия.
- 15. Аномалии и структура вакуума КХД.
- 16. Голдстоуновский механизм нарушения киральной симметрии в КХД.
- 17. Симметрия Изгура-Вайзе в секторе тяжелых кварков.
- 18. Эффективная теория тяжелых кварков.
- 19. Форм-факторы полулептонных распадов тяжелых мезонов и барионов.
- 20. Перенормировка КХД в одной петле.

- 21. Асимптотическая свобода и ренормгруппа.
- 22. Бегущие константа связи КХД и массы кварков.
- 23. Инфракрасная стабильность в КХД.
- 24. Глубоко-неупругое рассеяние в КХД.
- 25. Электрон-позитронное рассеяние в адроны.
- 26. Процессы Дрелла-Яна.
- 27. Полуинклюзивные процессы глубоко-неупругого рассеяния в КХД.
- 28. Функции распределения кварков и глюонов в адронах.
- 29. Модель Вайнберга-Салама.
- 30. Матрица смешивания кварков Кабиббо-Кобаяси-Маскава.
- 31. Механизм Хиггса спонтанного нарушения симметрии.
- 32. SU(5) модель великого объединения.
- 33. Нарушение барионного, лептонного числа и лептонного аромата.
- 34. Распад протона.
- 35. Дираковское и Майорановское нейтрино.
- 36. Двойной бета-распад.
- 37. Осцилляции нейтрино.
- 38. Матрица смешивания нейтрино Понтекорво-Маки-Накагава-Саката.
- 39. Киральная пертурбативная теория (КПТ).
- 40. КХД в пределе большого количества цветов.
- 41. Нерелятивсткие приближения в КХД и КЭД.
- 42. Бозонизации в КХД.
- в) Методические указания по организации самостоятельной работы студентов. Самостоятельная работа студента включает:
 - замостоятельная работа студента включает.
 - углубленное теоретическое изучение разделов курса при подготовке к лекционным и практическим занятиям;
 - подготовку к обсуждению материала, в том числе самостоятельный поиск необходимых источников информации, включая научно-образовательные ресурсы сети Интернет;
 - подготовку к экзаменам.

Вопросы, вынесенные на самостоятельное изучение.

- 1. Нарушение универсальности в слабых полулептонных распадах адронов.
- 2. Свойства адронов в подходах АдС/КХД.
- 3. Термературная зависимость свойств адронов.
- 4. Свойства адронов при конечной плотности среды.
- 5. Доменная структура вакуума КХД.
- 6. Физика аксионов.
- 7. Темная материя.
- 8. Физика лептокварков.

Темы для рефератов и учебно-методическая литература для самостоятельной работы по разделам дисциплины «Теория элементарных частиц»:

Тема 1. Темная материя.

Литература:

1. G. Bertone and D. Hooper, History of dark matter,

Rev. Mod. Phys. 90, no.4, 045002 (2018) doi:10.1103/RevModPhys.90.045002 [arXiv:1605.04909 [astro-ph.CO]].

2. K. M. Zurek, Asymmetric Dark Matter: Theories, Signatures, and Constraints, Phys. Rept. 537, 91 (2014) doi:10.1016/j.physrep.2013.12.001

[arXiv:1308.0338 [hep-ph]].

3. A. Arbey and F. Mahmoudi, Dark matter and the early Universe: a review,

Prog. Part. Nucl. Phys. 119, 103865 (2021)

doi:10.1016/j.ppnp.2021.103865, arXiv:2104.11488 [hep-ph]].

4. F. Kahlhoefer, Review of LHC Dark Matter Searches, Int. J. Mod. Phys. A32, no.13, 1730006 (2017) doi:10.1142/S0217751X1730006X, [arXiv:1702.02430 [hep-ph]].

5. N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer and N. Weiner,

A Theory of Dark Matter, Phys. Rev. D 79, 015014 (2009)

doi:10.1103/PhysRevD.79.015014[arXiv:0810.0713 [hep-ph]].

<u>Тема 2.Физика элементарных частиц на современных коллайдерах.</u>

Литература:

1. M. Thomson, Modern particle physics, Cambridge University Press, 2013, ISBN 978-1-107-03426-6.

2. V. Shiltsev and F. Zimmermann, Modern and Future Colliders,

Rev. Mod. Phys. 93, 015006 (2021) doi:10.1103/RevModPhys.93.015006 [arXiv:2003.09084 [physics.acc-ph]].

3. M. J. Strassler and K. M. Zurek, Echoes of a hidden valley at hadron colliders,

Phys. Lett. B 651, 374 (2007) doi:10.1016/j.physletb.2007.06.055

[arXiv:hep-ph/0604261 [hep-ph]].

4. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646, 220 (2002) doi:10.1016/S0550-3213(02)00837-4 [arXiv:hep-ph/0207004 [hep-ph]].

5. A. Djouadi, M. Spira and P. M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264, 440 (1991) doi:10.1016/0370-2693(91)90375-Z

<u>Тема 3. Голография в физике элементарных частии.</u>

Литература:

1. J. M. Maldacena,

The Large N limit of superconformal field theories and supergravity,

Adv. Theor. Math. Phys. 2, 231 (1998)

doi:10.1023/A:1026654312961

[arXiv:hep-th/9711200 [hep-th]].

2. A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Linear confinement and AdS/QCD,

Phys. Rev. D 74, 015005 (2006) doi:10.1103/PhysRevD.74.015005

[arXiv:hep-ph/0602229 [hep-ph]].

3. I. R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking,"

Nucl. Phys. B 556, 89 (1999) doi:10.1016/S0550-3213(99)00387-9

[arXiv:hep-th/9905104 [hep-th]].

4. A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers,

Holography, thermodynamics and fluctuations of charged AdS black holes,"

Phys. Rev. D 60, 104026 (1999) doi:10.1103/PhysRevD.60.104026

[arXiv:hep-th/9904197 [hep-th]].

5. S. J. Brodsky, G. F. de Teramond, H. G. Dosch and J. Erlich,

Light-Front Holographic QCD and Emerging Confinement,

Phys. Rept. 584, 1 (2015) doi:10.1016/j.physrep.2015.05.001

[arXiv:1407.8131 [hep-ph]].

12. Перечень учебной литературы и ресурсов сети Интернет

а) основная литература:

- 1. М.Е. Пескин, Д.Е. Шрёдер, Введение в квантовую теорию поля. -- Ижевск: НИЦ "Регулярная и хаотическая механика", 2001. -- 784 с.
- 2. Н.Н. Боголюбов, Д.В. Ширков, Введение в теорию квантованных полей. -- М.: Физматлит, 1984. -- 600 с.
- 3. Л. Б. Окунь, Лептоны и кварки, Москва, "Наука", 2-е изд., 1990, 324 с.
- 4. M. Thomson, Modern particle physics, Cambridge University Press, 2013, ISBN 978-1-107-03426-6.
 - 5. Т. П. Ченг, Л. Ф. Ли, Калибровочные теории в физике элементарных частиц, Москва, издательство "Мир ", 1987, 624 с.
 - 6. Е. Бюклинг, К. Каянти, Кинематика элементарных частиц, издательство "Мир", 1975, 343 стр.

б) дополнительная литература:

- 1. Г. Кейн, Современная физика элементарных частиц, Москва, издание Мир, 1990, 360 с
- 2. Ф. Хелзен, А. Мартин, Кварки и лептоны: Введение в физику частиц, Москва, издательство "Мир ", 1987, 456 с.
- 3. B. L. Ioffe, V. S. Fadin and L. N. Lipatov, Quantum chromodynamics: Perturbative and nonperturbative aspects," Cambridge Univ. Press, 2010, 585 c.

в) ресурсы сети Интернет:

http://arxiv.org База электронных препринтов: разделы hep-th, hep-ex https://www.inp.nsk.su/~baldin/PhysLect/index.html

Лекции по физике элементарных частиц, читаемые в Новосибирском государственном университете

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook); системы компьютерной вёрстки LaTex;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного типа, практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате, оснащенные системой («Актру»).

15. Информация о разработчиках

Любовицкий Валерий Ефимович, профессор, доктор физико-математических наук, кафедра квантовой теории поля физического факультета ТГУ.