Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ: Декан физического факультета С.Н. Филимонов

Оценочные материалы по дисциплине High-performance computing in biomedicine/ Высокопроизводительные вычисления в биомедицине

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки
Physics Methods and Information Technologies in Biomedicine
«Физические методы и информационные технологии в биомедицине»

Форма обучения Очная

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.П. Демкин

Председатель УМК О.М. Сюсина

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- УК-1 способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий;
- ПК-2 способен использовать свободное владение компьютерными программами анализа многомерных биомедицинских данных в задачах оценки состояния биосистем.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИУК-1.1. Выявляет проблемную ситуацию, на основе системного подхода осуществляет ее многофакторный анализ и диагностику.
- ИУК-1.2. Осуществляет поиск, отбор и систематизацию информации для определения альтернативных вариантов стратегических решений в проблемной ситуации
- ИУК-1.3. Предлагает и обосновывает стратегию действий с учетом ограничений, рисков и возможных последствий.
- ИПК-2.1. Знает принципы и методы сбора, обработки и наглядного представления медико-биологической информации.
- ИПК-2.2. Умеет планировать и разрабатывать дизайн медико-биологических исследований с использованием современных компьютерных технологий и программных средств.
- ИПК-2.3. Владеет навыками визуализации, моделирования, анализа результатов биомедицинских исследований.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

практические задания.

Примерные темы практических занятий с примерами заданий (проверяемые ИУК-1.1, ИУК-1.2, ИУК-1.3, ИПК-2.1, ИПК-2.2, ИПК-2.3):

- практическая работа №1 «Развитие суперкомпьютерной техники»;
- практическая работа №2 «Вложенность циклов и влияние способа выборки данных из памяти на быстродействие программы»;
- практическая работа №3 «Разработка параллельной ОрепМР программы перемножения матриц»;
- практическая работа №4 «Разработка параллельной МРІ программы перемножения матриц».

Практическая работа №1. «Развитие суперкомпьютерной техники» *Примеры заданий:*

- Проследите историю Cray Research Inc. и сделайте исторический обзор развития ее компьютеров.
- С помощью рейтинга суперкомпьютеров на сайте www.top500.org сделайте обзор истории развития и основных тенденций в мире суперкомпьютеров за последнее десятилетие.
- Опишите архитектуру и классифицируйте первые пять самых мощных суперкомпьютеров в мире согласно рейтингу суперкомпьютеров на сайте www.top500.org.
- Опишите архитектуру и классифицируйте высокопроизводительную вычислительную систему ТГУ.

Практическая работа №2. «Вложенность циклов и влияние способа выборки данных из памяти на быстродействие программы»

Примеры заданий:

 Реализовать алгоритм умножения матриц большой размерности и сравнить время выполнения программы в зависимости от порядка вложенности циклов (шесть вариантов).

Практическая работа №3. «Разработка параллельной ОрепМР программы перемножения матриц»

Примеры заданий:

- Выберите самый быстрый алгоритм умножения матриц из предыдущей задачи (вложение циклов) и распараллелите его для компьютеров с общей памятью.
- Измерьте время выполнения программы для различных типов распределения итераций (static, dynamic, guided, runtime) параметра расписания директивы #pragma omp for.
- Протестируйте программу на следующих количествах потоков: 1, 2, 4, 6, 8, 12, 16, 24.

Практическая работа №4. «Разработка параллельной МРІ программы перемножения матриц»

Примеры заданий:

- Распараллельте алгоритм умножения матриц для компьютеров с распределенной памятью.
 - Измерьте время выполнения программы для различного количества процессов.
 - Определить экспериментальные значения ускорения и эффективности программ.

Характерными показателями развития самостоятельности у студента в результате освоения дисциплины являются: теоретическое осмысление изучаемого материала, накопление необходимых умений и навыков, интерес к процессу создания продукта собственной самостоятельной деятельности, умение провести презентацию созданного продукта, умение отстаивать собственную точку зрения или предложенный вариант решения проблемы, рефлексия своей деятельности и результата.

Критерии оценивания:

Текущий контроль по дисциплине проводится путем контроля посещаемости, оценки отчетов по практическим занятиям.

Подготовка к практическим занятиям предполагает самостоятельную работу студентов по проведению расчетов, анализу, обработке данных, оформлении отчетов.

Балльная оценка текущего контроля успеваемости студента по данной дисциплине составляет максимум 57 баллов.

Таблица 2.1

No	Вид контроля	Количество	Количество	Сумма
Π/Π			баллов за 1	
			ед. контроля	
1.	Посещение лекций	9	1	9
2.	Выполнение практических заданий	4	12	48
	ИТОГО			57

Основным критерием балльной оценки текущего контроля успеваемости является **оценка качества выполнения практического задания** (содержание ответа, полнота ответа, владение профессиональным языком).

Индикаторы балльной оценки практических заданий:

- 10-12 баллов ответ не содержит ошибочных расчетов, элементов и утверждений, максимально полно раскрывает суть каждого вопроса, составлен профессиональным языком, содержит выводы;
- 7-9 баллов в ответе допущены непринципиальные ошибки и неточности в расчетах, ответ содержит упущения, составлен профессиональным языком, содержит выводы;
- 4-6 баллов ответ содержит несколько ошибок в расчетах, упущения, содержание ответов не полное; составлен профессиональным языком, в выводах допущены неточности;
- 0-3 баллов ответ содержит многочисленные ошибки в расчетах, упущения, содержание ответов не полное; выводы отсутствуют.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Экзамен в третьем семестре проводится в устной форме по билетам. Каждый экзаменационный билет состоит из двух теоретических вопросов по одной из тем дисциплины. Продолжительность экзамена 1,5 часа.

К экзамену допускаются только те студенты, кто удовлетворительно выполнили все практические задания.

Первые вопросы билетов проверяют формирование УК-1 в соответствии с индикатором ИУК-1.1-ИУК-1.3. Ответы даются в развернутой форме.

Вторые вопросы билетов проверяют формирование ПК-2 в соответствии с индикатором ИПК-2.1-ИПК-2.3. Ответы даются в развернутой форме

Примерный перечень теоретических вопросов

- 1. История развития вычислительной техники.
- 2. История развития параллельных вычислительных систем.
- 3. Закон Мура.
- 4. Современные высокопроизводительные вычислительные системы из top500.
- 5. Классификация мультипроцессорных вычислительных систем.
- 6. Многопроцессорные вычислительные системы с общей памятью.
- 7. Многопроцессорные вычислительные системы с распределенной памятью.
- 8. Параллельный алгоритм вычисления скалярного произведения векторов.
- 9. Параллельный алгоритм вычисления произведения матрицы на вектор.
- 10. Параллельный алгоритм вычисления произведения квадратных матриц.
- 11. Классификация Флинна.
- 12. Ускорение и эффективность параллельной программы.

- 13. Теоретическая и экспериментальная оценки ускорения. Закон Амдала.
- 14. Этапы разработки параллельной программы.
- 15. Модель параллельного программирования ОрепМР.
- 16. Директивы и функции библиотеки ОрепМР.
- 17. Модель данных ОрепМР.
- 18. Способы задания числа потоков в параллельной области.
- 19. Создание параллельных и последовательных областей в OpenMP.
- 20. Распределение работы в ОрепМР.
- 21. Модель параллельного программирования МРІ.
- 22. Распределение работы в МРІ.
- 23. Директивы синхронизации.
- 24. Функции MPI_Init(), MPI_Comm_rank(), MPI_Comm_size() и MPI_Finalize().
- 25. Функции двухточечного обмена MPI Send() и MPI Recv().
- 26. Функции двухточечного обмена MPI Isend() и MPI Irecv().
- 27. Функции коллективного взаимодействия MPI Bcast() и MPI Gather().
- 28. Функции коллективного взаимодействия MPI_Scatter() и MPI_Gather().
- 29. Функции коллективного взаимодействия MPI Gather() и MPI Reduce().
- 30. Параллельный алгоритм сложения.

Оценка промежуточной успеваемости студента на экзамене формируется в соответствии с таблицей:

Оценивание ответа студента на экзамене

Количество	Критерий оценивания	
баллов за ответ	Б	Д
43		
30		
20		
10		
5		

Полный развернутый ответ	
Неполный ответ	
Фрагментарный ответ	

Здесь Б – вопросы по билету; Д – дополнительные вопросы. Неудовлетворительная оценка соответствует всем иным случаям, не указанным в таблице.

Баллы, полученные на экзамене, суммируются с баллами, полученными по итогам текущего контроля. На основе итогового количества баллов выставляется оценка.

Соответствие 100-балльной шкалы оценок 4-альтернативной шкале оценок:

- 0-70 баллов «неудовлетворительно»,
- 71-77 баллов «удовлетворительно»,
- 78-84 баллов «хорошо»,
- 85-100 баллов «отлично».

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Теоретические вопросы:

- 1. История развития вычислительной техники. (ИУК-1.1.) Ответ должен содержать основные/ключевые этапы развития вычислительной техники.
- 2. История развития параллельных вычислительных систем. (ИУК-1.1.) Ответ должен содержать основные/ключевые этапы развития параллельных вычислительных систем.
- 3. Закон Мура. (ИУК-1.1.)
 - Ответ должен содержать формулировку закона Мура, примеры.
- 4. Современные высокопроизводительные вычислительные системы из top500. (ИУК-1.2.)
 - Ответ должен содержать описание функционала сервиса top500.
- 5. Классификация мультипроцессорных вычислительных систем. (ИУК-1.1.) Ответ должен содержать описание классификации мультипроцессорных вычислительных систем.
- 6. Многопроцессорные вычислительные системы с общей памятью. (ИУК-1.1.) Ответ должен содержать определение и описание особенностей данных вычислительных систем.
- 7. Многопроцессорные вычислительные системы с распределенной памятью. (ИУК-1.1.)
 - Ответ должен содержать определение и описание особенностей данных вычислительных систем.
- 8. Параллельный алгоритм вычисления скалярного произведения векторов. (ИПК-1.3.)
 - Ответ должен содержать описание построения данного параллельного алгоритма.
- 9. Параллельный алгоритм вычисления произведения матрицы на вектор. (ИПК-1.3.)
 - Ответ должен содержать описание построения данного параллельного алгоритма.
- 10. Параллельный алгоритм вычисления произведения квадратных матриц. (ИПК-1.3.)
 - Ответ должен содержать описание построения данного параллельного алгоритма.
- 11. Классификация Флинна. (ИУК-1.1.)
 - Ответ должен содержать формулировку классификации Флинна, примеры.
- 12. Ускорение и эффективность параллельной программы. (ИУК-1.3.)
 - Ответ должен содержать определения ускорения и эффективности параллельных программ.
- 13. Теоретическая и экспериментальная оценки ускорения. Закон Амдала. (ИУК-1.3.)
 - Ответ должен содержать определения теоретического и экспериментального ускорения, а также привести формулировку закона Амдала.
- 14. Этапы разработки параллельной программы. (ИПК-1.2.)
 - Ответ должен содержать описание построения алгоритма разработки параллельной программы
- 15. Модель параллельного программирования OpenMP. (ИУК-1.1.) Ответ должен содержать описание особенностей использования технологии параллельного программирования OpenMP.
- 16. Директивы и функции библиотеки ОрепМР. (ИУК-1.2.)

- Ответ должен содержать входные и выходные параметры, особенности работы, примеры использования основных директив и функций библиотеки OpenMP.
- 17. Модель данных OpenMP. (ИУК-1.2.) Ответ должен содержать описание модели данных в OpenMP.
- 18. Способы задания числа потоков в параллельной области. (ИУК-1.2.) Ответ должен содержать описание способов и соответствующих функций для задания числа потоков в параллельной области.
- 19. Создание параллельных и последовательных областей в OpenMP. (ИУК-1.2.) Ответ должен содержать описание способов и соответствующих функций для создания параллельных и последовательных областей в OpenMP.
- 20. Распределение работы в OpenMP. (ИУК-1.3.) Ответ должен содержать описание особенностей распределения работы в OpenMP.
- 21. Модель параллельного программирования МРІ. (ИУК-1.1.) Ответ должен содержать описание особенностей использования технологии параллельного программирования МРІ.
- 22. Распределение работы в MPI. (ИУК-1.3.) Ответ должен содержать описание особенностей распределения работы в MPI.
- 23. Директивы синхронизации. (ИУК-1.2.) Ответ должен содержать входные и выходные параметры, особенности работы, примеры использования.
- 24. Функции MPI_Init(), MPI_Comm_rank(), MPI_Comm_size() и MPI_Finalize(). (ИПК-1.1.) Ответ должен содержать входные и выходные параметры, особенности работы, примеры использования.
- 25. Функции двухточечного обмена MPI_Send() и MPI_Recv(). (ИПК-1.1.) Ответ должен содержать входные и выходные параметры, буферизация и блокировки.
- 26. Функции двухточечного обмена MPI_Isend() и MPI_Irecv(). (ИПК-1.1.) Ответ должен содержать входные и выходные параметры, буферизация и блокировки.
- 27. Функции коллективного взаимодействия MPI_Bcast() и MPI_Gather(). (ИПК-1.1.)
 Ответ должен содержать входные и выходные параметры, особенности работы,
- примеры использования. 28. Функции коллективного взаимодействия MPI_Scatter() и MPI_Gather(). (ИПК-1.1.)
 - Ответ должен содержать входные и выходные параметры, особенности работы, примеры использования.
- 29. Функции коллективного взаимодействия MPI_Gather() и MPI_Reduce(). (ИПК-1.1.)
 - Ответ должен содержать входные и выходные параметры, особенности работы, примеры использования.
- 30. Параллельный алгоритм сложения. (ИПК-1.3.) Ответ должен содержать описание построения данного параллельного алгоритма.

5. Информация о разработчиках

Лещинский Дмитрий Викторович, м.н.с. лаборатории прогнозирования состояния атмосферы Института оптики атмосферы СО РАН, старший преподаватель кафедры вычислительной математики и компьютерного моделирования, м.н.с. регионального научно-образовательного математического центра ТГУ.