# Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

# High-performance computing in biomedicine/ Высокопроизводительные вычисления в биомедицине

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки
Physics Methods and Information Technologies in Biomedicine
«Физические методы и информационные технологии в биомедицине»

Форма обучения Очная

Квалификация **Магистр** 

Год приема **2025** 

СОГЛАСОВАНО: Руководитель ОП В.П. Демкин

Председатель УМК О.М. Сюсина

#### 1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- УК-1 способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий;
- ПК-2 способен использовать свободное владение компьютерными программами анализа многомерных биомедицинских данных в задачах оценки состояния биосистем.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИУК-1.1. Выявляет проблемную ситуацию, на основе системного подхода осуществляет ее многофакторный анализ и диагностику.
- ИУК-1.2. Осуществляет поиск, отбор и систематизацию информации для определения альтернативных вариантов стратегических решений в проблемной ситуации
- ИУК-1.3. Предлагает и обосновывает стратегию действий с учетом ограничений, рисков и возможных последствий.
- ИПК-2.1. Знает принципы и методы сбора, обработки и наглядного представления медико-биологической информации.
- ИПК-2.2. Умеет планировать и разрабатывать дизайн медико-биологических исследований с использованием современных компьютерных технологий и программных средств.
- ИПК-2.3. Владеет навыками визуализации, моделирования, анализа результатов биомедицинских исследований.

# 2. Задачи освоения дисциплины

- Изучить основные архитектуры высокопроизводительных вычислительных систем.
  - Изучить простые параллельные алгоритмы линейной алгебры.
  - Освоить технологии параллельного программирования OpenMP.
- Освоить настройки программного обеспечения для удаленного доступа к суперкомпьютеру.
- Познакомиться с современным программным обеспечением и научиться его использовать при создании компьютерных моделей биомедицинских систем.

#### 3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части, формируемой участниками образовательных отношений образовательной программы.

Дисциплина освещает вопросы использования высокопроизводительных вычислений при решении задач биомедицины и проведения обработки и анализа биомедицинских данных.

Полученные в рамках дисциплины компетенции необходимы для эффективной организации научно-исследовательской работы и написания выпускной квалификационной работы.

# 4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 3, экзамен.

#### 5. Входные требования для освоения дисциплины

Для изучения курса необходимо освоить дисциплины, формирующие компетенции в области программирования, компьютерных наук, высшей математики и численных

методов решения задач. Необходимо знать один из языков программирования С\С++ или Fortran. Знать основные алгоритмы и численных методы решения задач линейной алгебры и уравнений в частных производных.

# 6. Язык реализации

Английский

#### 7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 з.е., 144 часа, из которых:

- лекции: 18 ч.;
- практические занятия: 18 ч.,

в том числе практическая подготовка: 18 ч.

Объем самостоятельной работы студента определен учебным планом.

## 8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Введение.

История развития суперкомпьютерных вычислений. Примеры применения МВС для решения сложных задач. Функциональные вычислительные устройства. Многоуровневая и модульная память. Конвейерные и векторные вычисления.

Тема 2. Обзор архитектур высокопроизводительных вычислительных систем.

Многопроцессорные вычислительные системы с общей и распределенной памятью. Примеры современных высокопроизводительных вычислительных систем.

Тема 3. Параллельные вычислительные методы.

Параллельные алгоритмы линейной алгебры. Примеры параллельных алгоритмов сложения векторов, умножения матрицы на вектор и перемножения матриц. Параллельные алгоритмы решения дифференциальных уравнений.

Тема 4. Параллельное программирование с использованием технологии OpenMP.

Потоки. Многопоточность. Компиляция программ, использующих ОрепМР. Последовательные и параллельные области. Задание количества нитей, выполняющих параллельную область. Вложенные параллельные области. Выполнение участка кода в параллельной области только одной нитью. Директивы распределение работы между потоками.

Тема 5. Технологии удаленного доступа. Инфраструктура облачных сервисов.

Удаленный доступ. Удаленный доступ и удаленное управление. Доступ к виртуальным сетям. Клиент удаленного доступа. Сервер удаленного доступа. Протоколы удаленного доступа. Удаленный доступ к специализированному программному обеспечению.

Тема 6. Типы облачных сервисов. Теоретические основы виртуализации.

Типы виртуализации: виртуализация аппаратуры, эмуляция, полная виртуализация, аппаратная виртуализация, паравиртуализация, гипервизор. Виртуализация рабочего места. Потребители облачных вычислений. Модели развертывания.

Тема 7. Облачные сервисы в исследовательском процессе

Применение облачных технологий для проведения научных исследований на примерах удаленного доступа к центрам коллективного пользования ТГУ. Использование специализированного программного обеспечения для повышения эффективности проводимых исследований.

Тема 8. Высокопроизводительные вычисления в медицине и биологии. Основные области применения.

Реализации научных проектов в области медицины и биологии с помощью специализированного программного обеспечения, различных технологий удаленного доступа и облачных сервисов. Использование технологии клиент-сервер.

Тема 9. Применение алгоритмов параллельных вычислений в биомедицине.

Основы использования специализированного программного обеспечения для проведения компьютерного моделирования с применением параллельных вычислений. Принципы построения моделей сложных биомедицинских систем и получение соответствующих численных решений для этих систем.

#### 9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, оценки практических заданий, предполагающих самостоятельную работу по расчетам, анализу, обработке информации, подготовке и оформлению результатов в форме отчетов.

Текущий контроль фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – <a href="https://www.tsu.ru/sveden/education/eduop/">https://www.tsu.ru/sveden/education/eduop/</a>.

### 10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в третьем семестре проводится в устной форме по билетам. Каждый экзаменационный билет состоит из двух теоретических вопросов по одной из тем дисциплины. Продолжительность экзамена 1,5 часа.

К экзамену допускаются только те студенты, кто удовлетворительно выполнили все практические задания.

Оценочные материалы текущего контроля и критерии оценивания промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

#### 11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=2958;
- б) Bogoslovskiy N.N. High-performance computing in biomedicine: trans. by A. Nabiullina / Bogoslovskiy N.N., Borisov A.V. Tomsk: Publishing house of Tomsk State University. 2016. 126 pp. 29 fig.;
- в) оценочные материалы текущего контроля и промежуточной аттестации по дисциплине  $\frac{\text{https://www.tsu.ru/sveden/education/eduop/.}}{\text{discontraction/eduop/.}}$

#### 12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Chandra, R. et al. (2001). Parallel Programming in OpenMP. San Diego: Academic Press, 230 P.
- 2. Chapman B. Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineering Computation) [Electronic resource] / B.Chapman, G. Jost, R. van der Pas. Cambridge: MIT Press, 2007. 378 p. The electronic version of the printing publication. http://mitp-content-server.mit.edu:18180/books/content (access date: 18.01.2024).
- 3. Борисов А.В., Воронцов А.А. Введение в МАТLAВ и его применение для конструирования физических моделей. Учебно-методический комплекс (УМК), 2011. Электронный ресурс. Режим доступа: http://edu.tsu.ru/eor/resourse/119/tpl/index.html (access date: 18.01.2024).
- 4. Борисов А.В., Воронцов А.А. Численное моделирование физических процессов с применением метода конечных элементов на базе COMSOL Multiphysics. Учебнометодический комплекс (УМК), 2010. Электронный ресурс. Режим доступа: http://edu.tsu.ru/eor/resourse/110/tpl/index.html (access date: 18.01.2024).

- 5. Optical Spectroscopy and Computational Methods in Biology and Medicine electronic resource /edited by Malgorzata Baranska, Dordrecht: Springer Netherlands: Imprint: Springer, 2014, XII, 540 p.
  - б) дополнительная литература:
- 1. Rauber T. Parallel Programming for Multicore and Cluster Systems [Electronic resource] / T. Rauber, G. Rünge. 2013. Berlin: Springer-Verlag Berlin Heidelberg, 2013. 2nd ed. 516 p. The electronic version of the printing publication. URL: http://link.springer.com/book/10.1007%2F978-3-642-37801-0 (access date: 18.01.2024).
- 2. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: учебное пособие. Т.1. Механика изд., ФМЛ, 2004.
- 3. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: учебное пособие. Т.6. Гидродинамика ФМЛ, 2005.
  - в) ресурсы сети Интернет:
- 1. Онлайн курс «Введение в параллельное программирование» https://www.coursera.org/learn/parallelnoye-programmirovaniye (access date: 18.01.2024)
- 2. Вэбинары по применению Comsol Multiphysics https://www.comsol.com/events/webinars (access date: 18.01.2024)
- 3. Материалы по применению Matlab https://www.mathworks.com/support/books/index\_by\_categorytitle.html?category=15 (access date: 18.01.2024)
- 4. Программный интерфейс OpenMP. Официальный сайт <a href="http://openmp.org/">http://openmp.org/</a> (access date: 18.01.2024)

# 13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Professional Plus 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office Access, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
  - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.);
  - интегрированная среда разработки программного обеспечения Visual Studio;
  - клиент для различных протоколов удалённого доступа Putty;
  - графический клиент для различных протоколов удалённого доступа WinSCP;
  - б) информационные справочные системы:
  - Электронный каталог Научной библиотеки ТГУ https://koha.lib.tsu.ru/
- Электронная библиотека (репозиторий) ТГУ <a href="http://vital.lib.tsu.ru/vital/access/manager/Index">http://vital.lib.tsu.ru/vital/access/manager/Index</a>
  - ЭБС Лань <a href="http://e.lanbook.com/">http://e.lanbook.com/</a>
  - Образовательная платформа Юрайт <a href="https://urait.ru/">https://urait.ru/</a>
  - 3EC ZNANIUM.com https://znanium.com/
  - 3EC IPRbooks http://www.iprbookshop.ru/
  - в) профессиональные базы данных (при наличии):
  - PubMed (https://pubmed.ncbi.nlm.nih.gov/)

#### 14. Материально-техническое обеспечение

Для проведения лекционных и практических занятий используется лаборатория моделирования физических процессов в биологии и медицине (аудитория № 442 второго учебного корпуса ТГУ), оснащенная интерактивной доской, звуковым и видеооборудованием, мультимедийным оборудованием для демонстрации презентаций, ресурсов сети Интернет, других учебных материалов. Имеются персональные

компьютеры студентов, с доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

При организации занятий в дистанционном режиме возможно использование технологий – вебинара, Mind.

Помещения для самостоятельной работы, в том числе расположенные в НБ ТГУ, оснащены компьютерной техникой, имеют доступ к сети Интернет, информационным справочным системам, в электронную информационно-образовательную среду.

# 5. Информация о разработчиках

Лещинский Дмитрий Викторович, м.н.с. лаборатории прогнозирования состояния атмосферы Института оптики атмосферы СО РАН, старший преподаватель кафедры вычислительной математики и компьютерного моделирования, м.н.с. регионального научно-образовательного математического центра, м.н.с. научно-исследовательской лаборатории вычислительной геофизики ТГУ.