Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Теория графов

по направлению подготовки / специальности

10.05.01 Компьютерная безопасность

Направленность (профиль) подготовки/ специализация: **Анализ безопасности компьютерных систем**

Форма обучения **Очная**

Квалификация Специалист по защите информации

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП В.Н. Тренькаев

Председатель УМК С.П. Сущенко

Томск - 2024

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-3 Способен на основании совокупности математических методов разрабатывать, обосновывать и реализовывать процедуры решения задач профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-3.1 Демонстрирует навыки выполнения стандартных действий, решения типовых задач, формулируемых в рамках базовых математических дисциплин

ИОПК-3.2 Осуществляет применение основных понятий, фактов, концепций, принципов математики и информатики для решения задач профессиональной деятельности

ИОПК-3.3 Выявляет научную сущность проблем, возникающих в ходе профессиональной деятельности, и применяет соответствующий математический аппарат для их формализации, анализа и выработки решения

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

– контрольная работа (ИОПК-3.1, ИОПК-3.2, ИОПК-3.3).

Контрольная работа №1

Типовые задания для контрольной работы № 1.

- 1. Транзитивное замыкание графа. Алгоритм Уоршалла, его трудоемкость.
- 2. Найти транзитивное замыкание заданного ориентированного графа.
- 3. Просмотр графа вширь (волновой алгоритм), его трудоемкость.
- 4. Найти кратчайшие пути от заданной вершины для заданного ориентированного графа волновым алгоритмом.

Контрольная работа №2

Типовые задания для контрольной работы № 2.

- 1. Алгоритм вычисления цикла Гамильтона на основе алгоритма бэктрекинга, его трудоемкость.
 - 2. Найти все циклы Гамильтона заданного ориентированного графа.
- 3. Алгоритм жадной раскраски графа, его трудоемкость. Оценка числа цветов графа.
 - 4. Найти раскраску заданного графа алгоритмом жадной раскраски.

Контрольная работа №3

Типовые задания для контрольной работы № 3.

- 1. Задача о максимальном потоке в сети. Теорема и алгоритм Форда Фалкерсона нахождения максимального потока в сети.
 - 2. Найти максимальный поток в графе с указанными пропускными способностями.
 - 3. Алгоритм Прима построения минимального остова, его трудоемкость.
 - 4. Найти минимальный остов в графе с указанными весами.

Критерии оценивания:

Результаты контрольной работы определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется, если задания выполнены без ошибок.

Оценка «хорошо» выставляется, если одно из заданий выполнено верно, а в другом присутствует значительная ошибка, либо в решениях есть незначительные ошибки.

Оценка «удовлетворительно» выставляется, если выполнено только одно из заданий, либо в обоих выполненных заданиях присутствуют значительные ошибки.

Оценка «неудовлетворительно» выставляется, если не выполнены оба задания, либо выполнено только одно из заданий, но с грубой ошибкой

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Промежуточная аттестация проводится в виде зачета с оценкой. Зачет проводится в письменной форме. Студент отвечает письменно на вопросы в билете, затем решает практические задачи. Далее необходимо в устной форме объяснить/защитить преподавателю, изложенный материал. Продолжительность зачета с оценкой 1 час.

Список вопросов для проведения промежуточной аттестации (ИОПК-3.3):

- 1. Граф как бинарное отношение. Представление обыкновенного графа в виде матрицы смежности и в виде списков номеров вершин.
- 2. Просмотр графа вширь (волновой алгоритм), его трудоемкость.
- 3. Алгоритм просмотра графа вглубь, его трудоемкость.
- 4. Алгоритм разделения графа на компоненты связности, его трудоемкость.
- 5. Графы-деревья. Свойства дерева. Каркас графа. Алгоритм построения каркаса связного графа.
- 6. Цикломатическое число. Теорема о хорде каркаса. Цикломатическая матрица.
- 7. Транзитивное замыкание графа. Алгоритм Уоршалла, его трудоемкость.
- 8. Сильная связность (бисвязность) ориентированного графа. Алгоритм выделения компонент бисвязности, его трудоемкость..
- 9. Алгоритм топологической сортировки ациклического ориентированного графа, его трудоемкость.
- 10. Проверка существования эйлерова цикла.
- 11. Алгоритм построения эйлерова цикла, его трудоемкость.
- 12. Алгоритм вычисления цикла Гамильтона на основе алгоритма бэктрекинга, его трудоемкость.
- 13. Алгоритм жадной раскраски графа, его трудоемкость. Оценка числа цветов графа.
- 14. Алгоритм раскраски графа на основе склеивания соцветных вершин.
- 15. Точный алгоритм раскраски графа на основе алгоритма бэктрекинга, его трудоемкость.
- 16. Планарный граф. Теорема о четырёх красках. Грани в планарном графе. Триангуляция.
- 17. Алгоритм Прима построения минимального остова во взвешенном графе, его трудоемкость.
- 18. Алгоритм Дейкстры вычисления кратчайших расстояний и путей от заданной вершины во взвешенном графе, его трудоемкость.
- 19. Алгоритм Флойда вычисления кратчайших расстояний и путей для всех пар вершин, его трудоемкость.
- 20. Точный алгоритм решения задачи коммивояжёра на основе алгоритма бэктрекинга, его трудоемкость.
- 21. Задача коммивояжёра для симметричных расстояний с неравенством треугольника. Приближённый алгоритм дерева решения задачи коммивояжёра, его трудоемкость и оценка качества решения.
- 22. Минимальный разрез и максимальный поток в сети. Теорема Форда Фалкерсона.
- 23. Алгоритм Форда Фалкерсона вычисления максимального потока.
- 24. Алгоритм вычисления наибольшей клики на основе алгоритма бэктрекинга, его трудоемкость.
- 25. Покрытия (доминирующие множества), их вычисление.
- 26. Опоры. Полные и пустые подграфы. Опоры и пустые подграфы, связь между ними.

Критерии оценивания:

Оценка	Форма записи прописью	Критерий оценивания
5	Отлично	Обучающийся показал творческое отношение к обучению, в совершенстве овладел всеми теоретическими вопросами, показал все требуемые умения и навыки в решении задач.
4	Хорошо	Обучающийся овладел всеми теоретическими вопросами, частично показал основные умения и навыки в решении задач.
3	Удовлетво- рительно	Обучающийся имеет недостаточно глубокие знания по теоретическим разделам дисциплины, показал не все основные умения и навыки в решении задач.
0	Неудовлет- ворительно	Обучающийся имеет существенные пробелы по отдельным теоретическим разделам дисциплины и не владеет основными умениями и навыками в решении задач.

Оценка за промежуточную аттестацию по дисциплине выставляется как среднеарифметическая итогов текущего контроля успеваемости. При условии сдачи всех частей текущей аттестации на положительную оценку.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Теоретические вопросы (ИОПК-3.3):

- 1. Просмотр графа вширь (волновой алгоритм), его трудоемкость.
- 2. Алгоритм разделения графа на компоненты связности, его трудоемкость.
- 3. Алгоритм построения каркаса связного графа.
- 4. Транзитивное замыкание графа. Алгоритм Уоршалла, его трудоемкость.
- 5. Проверка существования эйлерова цикла.
- 6. Алгоритм построения эйлерова цикла, его трудоемкость.
- 7. Алгоритм вычисления цикла Гамильтона на основе алгоритма бэктрекинга, его трудоемкость.
 - 8. Алгоритм жадной раскраски графа, его трудоемкость. Оценка числа цветов графа.
- 9. Алгоритм Прима построения минимального остова во взвешенном графе, его трудоемкость.
- 10. Алгоритм Дейкстры вычисления кратчайших расстояний и путей от заданной вершины во взвешенном графе, его трудоемкость.
- 11. Точный алгоритм решения задачи коммивояжёра на основе алгоритма бэктрекинга, его трудоемкость.
 - 12. Алгоритм Форда Фалкерсона вычисления максимального потока в сети.
- 13. Опоры. Полные и пустые подграфы. Опоры и пустые подграфы, связь между ними.

Практические задачи (ИОПК-3.1, ИОПК-3.2, ИОПК-3.3):

- 1. Граф задан в виде матрицы смежности. Изобразить его и задать в виде списков номеров вершин.
- 2. Обыкновенный граф задан в виде матрицы смежности. Разделить граф на компоненты связности.
 - 3. Обыкновенный граф задан в виде матрицы смежности. Построить его каркас.
- 4. Ориентированный граф задан в виде матрицы смежности. Построить его транзитивное замыкание.
- 5. Ориентированный граф задан в виде матрицы смежности. Проверить существование для него эйлерова цикла.
- 6. Ориентированный граф задан в виде матрицы смежности. Построить для него эйлеров цикл.
- 7. Ориентированный граф задан в виде матрицы смежности. Построить для него цикл Гамильтона.
- 8. Граф задан в виде матрицы смежности. Вычислить для него раскраску вершин алгоритмом жадной раскраски.
 - 9. Граф задан в виде матрицы весов рёбер. Построить для него минимальный остов.
- 10. Граф задан в виде матрицы весов рёбер. Вычислить для него все кратчайшие расстояния и путей от заданной вершины.
- 11. Граф задан в виде матрицы весов рёбер. Вычислить для него маршрут коммивояжёра.
- 12. Транспортная сеть задана в виде матрицы пропускных способностей рёбер. Вычислить максимальный поток в этой сети.

Задача должна быть решена верно, или в решении могут быть допущены незначительные ошибки.

Информация о разработчиках

Костюк Юрий Леонидович, доктор технических наук, профессор, профессор кафедры теоретических основ информатики НИ ТГУ.