Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Электронные свойства твердых тел

по направлению подготовки

03.04.02 – Физика

Направленность (профиль) подготовки **Фундаментальная и прикладная физика**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

Томск-2024

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

— ПК-1 —Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИПК-1.1. Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости;

ИПК-1.2. Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.

2. Задачи освоения дисциплины

Получить представления о современных методах исследования физических свойств и принципах работы приборов на основе металлов, их сплавов и соединений.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины необходимо знание основ квантовой механики, термодинамики, статистической физики, физики твердого тела.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- лекции: 32 ч.;
- практические занятия: 16 ч.;

В том числе практическая подготовка 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Теоретические методы исследования электронной структуры твердых тел.

Метод функционала электронной плотности. Теорема и вариационный принцип Хоэнберга-Кона. Самосогласованные уравнения Кона-Шэма. Приближения для обменно-корреляционного потенциала. К-р метод, тензор обратной эффективной массы. Дырки валентной зоны. Динамика электрона во внешнем, медленно меняющемся поле. Метод эффективной массы. Огибающая волновая функция. Эквивалентный гамильтониан. Полуклассическое приближение. Динамика электронов в электрическом поле (квазиклассическое описание). Осцилляции Блоха. Туннельный эффект Зинера. Динамика электронов в магнитном поле (квазиклассическое описание). Траектории движения в

фазовом и реальном пространствах. Циклотронный резонанс. Условия наблюдения. Электронные состояния в квантующем магнитном поле. Диамагнетизм Ландау. Парамагнетизм Паули. Плазменные колебания. Распределение электронов в к-пространстве в присутствии квантующего магнитного поля.

Тема 2. Теоретические и экспериментальные методы изучения топологии поверхности Ферми.

Поверхности Ферми: открытые и закрытые, электронные и дырочные. Метод Харрисона построения поверхности Ферми в схеме расширенных и повторяющих зон Бриллюэна. Эффект де Гааза-ван-Альфена. Природа осцилляций.

Тема 3. Полуклассическая теория проводимости и термоэлектрических явлений металлов.

Кинетическое уравнение Больцмана. Интеграл столкновений. Приближение времени релаксации. Обобщенные уравнения потоков. Кинетические коэффициенты. Статическая электропроводность. Термоэлектрические явления (эффекты Зеебека, Пельтье, Томсона). Теплопроводность, закон Видемана-Франца. Явление переноса в слабом магнитном поле. Эффект Холла. Магнетосопротивление. Поглощение ультразвука без магнитного поля. Поглощение ультразвука в магнитном поле. Нормальный скин-эффект. Аномальный скин-эффект. Концепция неэффективности. Высокочастотная электропроводность металла.

Тема 4. Электронная структура и свойства простых металлов и сплавов.

Одновалентные щелочные и благородные металлы. Двухвалентные металлы. Трехвалентные металлы. Четырехвалентные Полуметаллы. металлы. Переходные металлы. Сплавы переходных металлов. Правило Юм-Розери. Ограниченная растворимость. Влияние электронной плотности на фазовые переходы.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, тестов по лекционному материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/

10. Порядок проведения и критерии оценивания аттестации

Экзамен проводится в устной форме по билетам, содержащим вопросы по курсу, предполагающие развернутый ответ и проверяющие ПК-1, а также по контрольным вопросам по материалу курса, требующим краткий ответ и проверяющим ИПК-1.1, ИПК-1.2.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=22922
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Павлов П.В., Хохлов А.Ф. Физика твердого тела. M: Ленанд, 2015. 494 с.
- 2. Ашкрофт Н., Мермин Н. Физика твердого тела. М.: Мир, 1979. Ашкрофт Н., Мермин Н. Физика твердого тела. М.: Мир, 1979. Том 2. 419 с.
- 3. Брандт Н.Б., Чудинов С.М. Электроны и фононы в металлах. М.: Изд. МГУ, 1990. 335 с.

- 4. Абрикосов А.А. Основы теории металлов. М.: Физматлит, 2010. 599 с.
- 5. Давыдов А.С. Теория твердого тела. M.: Наука, 1976. 639 c.
- 6. Анималу А. Квантовая теория кристаллических твердых тел. М.: Мир, 1981. 576 с.
- б) дополнительная литература:
- 1. Брандт Н.Б., Чудинов С.М. Электронная структура металлов. М.: Изд. МГУ, 1973. 332 с.
- 2. Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978. 792 с.
- 3. Вонсовский С.В., Канцельсон М.И. Квантовая физика твердого тела. М.: Наука, 1983. 336 с.
- 4. Займан Дж. Электроны и фононы. М.: ИИЛ, 1962. 488 с.
- 5. Займан Дж. Принципы теории твердого тела. М.: Мир, 1966. 416 с.
- 6. Абрикосов А.А. Введение в теорию нормальных металлов. М.: Наука, 1972. 288 с.
- 7. Маделунг О. Теория твердого тела. M.: Наука, 1980. 416 c.
- 8. Харрисон У.А. Электронная структура и свойства твердых тел. М.: Мир, 1983. Том 1. 381 с.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Гриняев Сергей Николаевич, доктор физ.-мат. наук, ТГУ, кафедра физики полупроводников, доцент.