Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДАЮ: И.о. декана химического факультета А. С. Князев

Рабочая программа дисциплины

Термический анализ

по направлению подготовки / специальности

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) подготовки / специализация: **Фундаментальная и прикладная химия**

Форма обучения **Очная**

Квалификация **химик-специалист**, преподаватель

Год приема **2023**

СОГЛАСОВАНО: Руководитель ОП В.В. Шелковников

Председатель УМК Л.Н. Мишенина

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1. Способен анализировать и интерпретировать результаты химических экспериментов, наблюдений и измерений в различных областях химии.
- ОПК-2. Способен проводить синтез, анализ, изучение структуры и свойств веществ и материалов, исследовать процессы с их участием.
- ПК-1. Способен планировать работу и выбирать адекватные методы решения научно-исследовательских задач в выбранной области химии, химической технологии или смежных с химией науках.
- ПК-6. Способен осуществлять контроль качества сырья, компонентов и выпускаемой продукции химического назначения, проводить паспортизацию товарной продукции.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РООПК 1.1 Знает теоретические основы неорганической, органической, физической и аналитической химии, применяет их при решении профессиональных задач в других областях химии.
- РООПК 1.2 Умеет систематизировать и интерпретировать результаты экспериментов и расчетно-теоретических работ с использованием теоретических основ традиционных и новых разделов химии.
- РООПК 1.3 Умеет грамотно формулировать заключения и выводы по результатам работы.
- РООПК 2.2 Знает теоретические основы методов изучения состава, структуры и свойств для грамотного выбора метода исследования.
- РООПК 2.3 Умеет проводить стандартные синтезы по готовым методикам, выполнять стандартные операции для определения химического и фазового состава веществ и материалов, а также использовать серийное научное оборудование для изучения их свойств.
- РОПК 1.1 Умеет разрабатывать стратегию научных исследований, составляет общий план и детальные планы отдельных стадий.
- РОПК 1.2 Умеет выбирать экспериментальные и расчетно-теоретические методы решения поставленной задачи, используя достижения современной химической науки, и исходя из имеющихся, материальных, информационных и временных ресурсов.
- РОПК 6.2 Умеет составлять протоколы испытаний, паспорта химической продукции, отчеты о выполненной работе по заданной форме.

2. Задачи освоения дисциплины

- сформировать у студентов представления о теоретических основах термического анализа; физических принципах работы и особенностях конструкции и программного обеспечения различных термоаналитических приборов; основных областях применения различных видов анализа; стандартных методиках обработки результатов термического анализа;
- научить выбирать и обосновывать условия проведения термического анализа для решения конкретных исследовательских задач;
- научить интерпретировать полученные данные, в том числе с использованием современного программного обеспечения и литературных данных, и делать выводы о составе исходных и промежуточных соединений, конечных продуктов, а также о механизме реакций термической деструкции исследуемых объектов;
- научиться проводить расчет кинетических параметров реакций по результатам термического анализа.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль «Неорганическая химия и химическое материаловедение».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Восьмой семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: «Неорганическая химия», «Аналитическая химия», «Органическая химия», «Физическая химия» «Химия ВМС», «Физика», «Информатика», «Методы математической статистики в химии», «Физические методы исследования».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 2 з.е., 72 часов, из которых:

- -лекции: 12 ч.
- -лабораторные: 20 ч.
 - в том числе практическая подготовка: 20 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Методы термического анализа

Термические характеристики материала. Классификация методов термического анализа. Современные приборы термического анализа. Технические характеристики, возможности и области применения. Факторы, влияющие на точность анализа. Программное обеспечение современных термоаналитических приборов

Тема 2. Термогравиметрия.

Устройство и принцип работы синхронного термоанализатора. Преимущества и недостатки термогравиметрии. Форма термогравиметрической кривой. Стандартные методы обработки термограмм. Выделение температурных интервалов одностадийных, параллельных и последовательных реакций. Использование термогравиметрических кривых для составления материального баланса процессов термической деструкции веществ и материалов. Статистическая, квазистатическая и динамическая.

Тема 3. Дифференциальный термический анализ. Дифференциальная сканирующая калориметрия

Теоретические основы дифференциального термического анализа (ДТА) и дифференциальной сканирующей калориметрии (ДСК). Физико-химическая природа пиков кривых дифференциального термического анализа и дифференциальной сканирующей калориметрии. Стандартизированные методы построения базовых линий и способы определения площадей пиков аналитической кривой. Расчет тепловых эффектов наблюдаемых физико-химических превращений в дифференциальном термическом анализе. Области применения методов дифференциального термического анализа и дифференциальной сканирующей калориметрии.

Тема 4. Факторы, влияющие на результаты термоаналитических измерений.

Факторы, связанные с измерительным прибором: скорость нагревания печи, форма держателя образца и печи, контакт между образцом и атмосферой, атмосфера печи, чувствительность термопары, химический состав материала контейнера для образца.

Характеристики образца: масса образца, размер частиц образца, теплота реакции, плотность упаковки частиц образца, состав образца, теплопроводность.

Тема 5 Кинетика твердофазных реакций.

Особенности физико-химических процессов, идущих с участием твердых веществ. Понятие степени превращения в термическом анализе. Теоретическое обоснование возможности расчета кинетических параметров физико-химических процессов по результатам термического анализа, проведенного в неизотермическом режиме. Математическое описание скорости реакции, протекающей в неизотермическом режиме. Использование результатов термогравиметрии и дифференциального термического анализа для определения степени превращения. Методы расчета энергии активации, порядка реакции и предъэкспоненциального множителя физико-химических процессов по дифференциального термогравиметрии И термического Лифференциальные, интегральные и аппроксимационные методы расчета порядка реакции, энергии активации и предъэкспоненциального множителя. Достоинства и недостатки методов. Поиск и выбор оптимального метода для обработки термоаналитических кривых.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, выполнения теста, проверяющего знания теоретических основ метода термического анализа (РООПК 1.1., РООПК 2.2.), выполнения лабораторного практикума и написания отчетов по работе, оценки выполнения практических заданий по обработке термограмм твердых веществ и материалов, полученных на синхронном термоанализаторе STA 449 C Jupiter, и фиксируется в форме контрольной точки не менее одного раза в семестр. К зачету допускаются студенты, выполнившие лабораторный практикум в полном объеме. В ходе выполнения лабораторного практикума и при проведении текущего контроля проверяется освоение ОПК-1 (РООПК 1.1, РООПК 1.2, РООПК 1.3), ОПК-2 (РООПК 1.2, РООПК 2.3), ПК-1 (РОПК-1.1, РОПК 1.2), ПК-6 (РОПК 6.2).

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет проводится по результатам выполнения и защиты индивидуального задания, проверяющего знания по ОПК-1 (РООПК 1.1, РООПК 1.2, РООПК 1.3), ОПК-2 (РООПК 1.2, РООПК 2.3), ПК-1 (РОПК-1.1, РОПК 1.2). Продолжительность подготовки студентом ответа -30 минут, ответ 20 минут.

Пример индивидуального задания:

Описать термограмму термического разложения $MnCl_2 \times 4H_2O$ и рассчитать кинетические параметры реакции дегидратации.

- 1. На основании представленных результатов термического анализа соли $MnCl_2 \times 4H_2O$ (термограмма выдается преподавателем), выполненного на синхронном термоанализаторе STA 449 C Jupiter:
 - определить условия проведения съемки на синхронном термоанализаторе
- -определить количество наблюдаемых на термограмме физико-химических превращений
 - определить энергетику процессов (эко-, эндотермические)
- выделить процессы, идущие с изменением массы, рассчитать изменение массы на каждой ступени разложения
- составить материальный баланс процесса и записать предполагаемые реакции физико-химических превращений, используя литературные данные
- дать рекомендации по подбору программы дополнительного анализа с целью разделения по температурному диапазону близлежащих последовательных реакций.
- выбрать температурный диапазон и стадию разложения для расчета кинетических параметров (энергии активации, порядка реакции) методом Метцгера-Горовица;

- -обосновать выбор термогравиметрических, термографических данных для обработки;
 - рассчитать степень превращения для выбранного температурного интервала;
- -с помощью стандартных программ провести линеаризацию экспериментальных данных в координатах выбранных математических уравнений зависимости степени превращения от температуры;
 - определить значения величины порядка реакции и энергии активации.

Зачет получает студент, который на защите индивидуального задания показывает знание понятийного аппарата дисциплины «Термический анализ»; умение анализировать ход термоаналитических кривых; характеризует этапы термической деструкции вещества, используя справочную, учебную и научно-техническую литературу, владеет методами расчета кинетических параметров процессов. Студент может допускать некоторые неточности в расчетах или описании термограмм, которые он исправляет сразу после наводящих вопросов преподавателя.

Студент, не выполнивший индивидуальное задание, не умеющий провести сопоставительный анализ хода термоаналитических кривых (ТГ-, ДТГ-, ДТА- и ДСК-кривых) для описания процессов термической деструкции веществ и материалов не получает зачета по дисциплине.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=00000
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских / практических занятий по дисциплине.
 - г) Методические указания по проведению лабораторных работ.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Новоженов В. А., Стручева Н. Е. Термический анализ. Барнаул: Издательство Алтайского государственного университета. 2012.
- Matthias Wagner. Thermal Analysis in Practice. Fundamental Aspects. Hanser Fachbuchverlag, 2018. 349 p. ISBN: 978-1-56990-643-9.
- Michael E. Brown . Handbook of Thermal Analysis and Calorimetry. Elsevier Science Publishing, 1998. – 722 p.
- Третьяков А. Ф. Материаловедение и технологии обработки материалов: [учебное пособие для студентов высших учебных заведений / А. Ф. Третьяков, Л. В. Тарасенко. М.: Издательство МГТУ им. Н. Э. Баумана, 2014.
- Емелина А.Л. Дифференциальная сканирующая калориметрия Лаборатория химического факультета, МГУ, 2009
- Третьяков Ю. Д., Путляев В. И. Введение в химию Твердофазных материалов. М.: Издательство Московского университета, Издательство «Наука», 2006.
 - Пурмаль А. П., А, Б, В. химической кинетики М.: ИКЦ «Академкнига», 2004
 - б) дополнительная литература:
- Шестак Я. Теория термического анализа: физико-химические свойства твердых неорганических веществ. М.: Мир, 1987.
 - Уэндландт У. Термические методы анализа М.: Мир, 1978.
- Фиалко М.Б. Неизотермическая кинетика в термическом анализе. Томск :
 Издательство Томского университета, 1981.

- в) ресурсы сети Интернет:
- Электронно-библиотечная система Znanium.com [Электронный ресурс] / Научно-издательский центр Инфра-М. Электрон. дан. М., 2012- . URL: http://znanium.com/
- ScienceDirect [Electronic resource] / Elsevier B.V. Electronic data. Amsterdam,
 Netherlands, 2016. URL: http://www.sciencedirect.com/
- Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]. Электрон. дан. М., 2000- . URL: http://elibrary.ru/defaultx.asp?
- Электронная библиотека (репозиторий) ТГУ [Электронный ресурс]. Электрон. дан. Томск, 2011- . URL: http://vital.lib.tsu.ru/vital/access/manager/Index

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - программное обеспечение к синхронному термоанализатору STA 449 C Jupiter
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 3FC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитория для проведения занятий лекционного типа, оснащенная мультимедийным оборудованием для демонстрации презентаций, слайдов и компьютерной анимации (аудитория № 402 6-го учебного корпуса ТГУ).

Лаборатория термического анализа (№ 408, 6-го учебного корпуса ТГУ), в которой установлен современный синхронный термоанализатор STA 449 Jupiter сопряженный с масс-спектрометром QMS 403 Aeolos, позволяющий проводить исследование термического поведения неорганических, органических, высокомолекулярных веществ и материалов в инертной и окислительной атмосфере в диапазоне температур 25–1500 °C.

15. Информация о разработчиках

Автор программы: Селюнина Лилия Александровна, кан. хим. наук, кафедра неорганической химии Национального исследовательского Томского государственного университета, доцент.

Рецензент: Халипова Ольга Сергеевна, кан. техн. наук, кафедра неорганической химии Национального исследовательского Томского государственного университета, доцент.