Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДАЮ: Декан

А. Г. Коротаев

Оценочные материалы по дисциплине

Моделирование полупроводниковых детекторов ионизирующего излучения

по направлению подготовки

03.04.03 Радиофизика

Направленность (профиль) подготовки: Материалы и устройства функциональной электроники и фотоники

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП И.А. Прудаев

Председатель УМК А.П. Коханенко

Томск - 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- ПК-2 Способен осуществлять построение математических моделей объектов исследования и выбор готового или разработку нового алгоритма решения задачи.
- УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК 2.1 Формулирует постановку задачи, определяет параметры и функции разрабатываемой системы
- ИПК 2.2 Определяет алгоритм и набор параметров, с учётом которых должно быть проведено моделирование устройства или системы
 - ИПК 2.3 Проводит компьютерное моделирование устройства или системы
- ИУК 1.1 Выявляет проблемную ситуацию, на основе системного подхода осуществляет её многофакторный анализ и диагностику

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- тесты;
- контрольная работа;
- презентации на семинарах.

В ходе контроля проверяется достижение обучающимися следующих результатов обучения: ИПК-2.1 (Формулирует постановку задачи, определяет параметры и функции разрабатываемой системы), ИПК-2.2 (Определяет алгоритм и набор параметров, с учётом которых должно быть проведено моделирование устройства или системы), ИПК-2.3 (Проводит компьютерное моделирование устройства или системы).

Примерный перечень вопросов для самостоятельной работы студентов (тестов)

- 1. Физический смысл эффективной массы и подвижности носителей заряда.
- 2. Уравнения непрерывности для электронов и дырок.
- 3. Принципы построения зонной диаграммы гетероперехода. Образование потенциальной ямы на гетерогранице.
- 4. Уравнение Пуассона. Решение уравнения Пуассона на примере линейного p-n перехода.
- 5. Основные технологические операции применяемые в полупроводниковой элеткронике.
- 6. Опишите основные этапы численного моделирования электрофизических характеристик полупроводниковых устройств средствами программного обеспечения TCAD Sentaurus.
- 7. Перечислите основные типы поглощения гамма- и рентгеновского излучений в твёрдых телах. Каковы критерии эффектов?
 - 8. Поясните отличие теорем Рамо и Рамо-Шокли.
- 9. Какие основные параметры ионизирующего излучения позволяет оценить амплитудный спектр?
- 10. Основные преимущества и недостатки детекторов ионизирующих излучений на основе кремния и германия.
 - 11. Чем ограничивается толщина чувствительной области детекторов?
- 12. Каким основным физическим параметром определяется эффективность сбора заряда?

Примеры задач:

- 1. Расчёт параметров детекторной структуры на основе GaAs:Cr.
- 2. Анализ амплитудных спектров от α-, β- и γ-излучений.
- 3. Расчёт эффективности сбора заряда детектора от α-, β- и γ-излучений.
- 4. Создание проекта в САПР TCAD
- 5. Создание сенсорных структур с использованием модулей Sprocess и SDE
- 6. Проектирование технологического процесса изготовления кремниевой структуры
- 7. Создание структуры полупроводниковых сенсоров различного типа с использованием модуля SDE
- 8. Формирование командного файла Sdevice для моделирования работы прибора на физическом уровне
- 9. Расчет статических вольт-амперных характеристик полупроводниковых сенсоров в TCAD Sentaurus
 - 10. Моделирование динамических характеристик сенсоров в режиме Mixed mode
- 11. Моделирование электрического отклика полупроводникового сенсора на оптическое возбуждение

Примерные темы семинарских занятий:

- 1. Современные инструменты технологического и приборного моделирования в микроэлектронике: Synopsys, Silvaco, Comsol.
 - 2. Назначение и инструментарий модуля SVisual в TCAD Sentaurus.
 - 3. Назначение и инструментарий модуля SDE в TCAD Sentaurus.
 - 4. Назначение и инструментарий модуля SDEVICE в TCAD Sentaurus.
- 5. Модели рекомбинации в TCAD Sentaurus: описание, аналитическое представление и использование на примерах.
- 6. Модели подвижности носителей заряда в TCAD Sentaurus: описание, аналитическое представление и использование на примерах.
- 7. Модели переноса носителей заряда в TCAD Sentaurus: диффузионно-дрейфовая, термодинамическая и гидродинамическая.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

В ходе контроля проверяется достижение обучающимися следующих результатов обучения: ИПК-2.1 (Формулирует постановку задачи, определяет параметры и функции разрабатываемой системы), ИПК-2.2 (Определяет алгоритм и набор параметров, с учётом которых должно быть проведено моделирование устройства или системы), ИПК-2.3 (Проводит компьютерное моделирование устройства или системы).

Примерный перечень теоретических вопросов:

- 1. Виды численного моделирования полупроводниковых устройств и схем на их основе. Протекание электрического тока в полупроводниках.
- 2. Уравнения непрерывности для электронов и дырок. Способы формирования топологии полупроводникового устройства с помощью программного комплекса TCAD.
- 3. Формирование однородной и неоднородной сетки расчета с помощью программного комплекса TCAD. Гетеропереходы в полупроводниковых структурах. Образование потенциальной ямы на гетерогранице.
- 4. Уравнение Пуассона. Решение уравнения Пуассона на примере линейного *p-n* перехода. Виды численного моделирования полупроводниковых устройств и схем на их основе.
- 5. Основные технологические операции, применяемые в полупроводниковой электронике. Осуществление выбора и подключения электрофизических моделей в программном комплексе TCAD.

- 6. Поглощение оптического, рентгеновского и γ-излучений. Внутренний фотоэффект. Эффект Комптона. Генерация электрон-позитронных пар.
- 7. Электростатическая индукция заряда в твёрдых телах. Уравнение наведённого тока. Теорема Рамо-Шокли.
- 8. Эффективность сбора заряда. Вывод формулы Хехта.
- 9. Материалы и структуры для детекторов ионизирующих излучений и заряженных частиц. Требования к материалам для детекторов.
- 10. Основные типы детекторов. Спектрометрические детекторы. $\delta E\!-\!E$ детекторы. Координатные детекторы.
- 11. Общая характеристика систем автоматизированного проектирования и моделирования технологических процессов, моделирования полупроводниковых приборов и микросхем.
- 12. Виды ионизирующего излучения и их взаимодействие с полупроводниками.
- 13. Материалы и структуры для детекторов ионизирующих излучений и заряженных частиц: классификация, преимущества и недостатки.

Студент, не аттестованный в контрольной точке, не допускается к сдаче зачета. Результаты зачета определяются оценками «зачтено» «не зачтено»

Результаты зачета определяются оценками «зачтено», «не зачтено».						
Компетенция	Индикатор компетенции	Критерии оценивания результатов обучения				
		Не зачтено	Зачтено			
ПК-2 Способен осуществлять построение математичес ких моделей объектов исследования и выбор готового или разработку нового алгоритма решения задачи.	ИПК 2.1 Формулирует постановку задачи, определяет параметры и функции разрабатывае мой системы	Не способен формулировать постановку задач и разрабатывать системы для моделирования полупроводниковых детекторов	Формулирует постановку задачи, определяет параметры и функции разрабатываемой системы моделирования полупроводниковых детекторов с использованием информационных технологий			
	ИПК 2.2 Определяет алгоритм и набор параметров, с учётом которых должно быть проведено моделирован ие устройства или системы	Не способен определять алгоритмы и наборы параметров, проводить моделирование полупроводниковых детекторов	Определяет алгоритм и набор параметров, с учётом которых должно быть проведено моделирование полупроводниковых детекторов			
	ИПК-2.3 Проводит компьютерно е моделирован ие устройства или системы	Не способен проводить компьютерное моделирование полупроводниковых детекторов	Проводит компьютерное моделирование полупроводниковых детекторов			

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Вопросы теста для оценки остаточных знаний по дисциплине (верные ответы выделены курсивом)

No	Вопросы	Ответы
1	В каких случаях	1. Всегда.
	радиоактивный распад	2. Только в случае альфа-распада.
	сопровождается	3. Когда электрон проникает в ядро.
	сопутствующим гамма-	
	излучением?	
2	Почему при бета-	1. Участие в бета-распаде нейтрино.
	распаде энергетический	2. Рассеяние энергии электронов вследствие
	спектр электронов	кулоновского взаимодействия с атомными
	широкий?	электронами.
		3. Потери энергии на сопутствующее гамма-
		излучение.
3	Что такое минимально	1. Частица, у которой минимальны удельные потери
	ионизирующая частица?	энергии на ионизацию и возбуждение атомов.
		2. Частица с энергией, близкой к энергии
		ионообразования.
		3. Частица, которая расходует свою энергию
		преимущественно на образование дефектов решётки.
4	Какой параметр	1. Дрейфовая длина носителей заряда.
	определяет	2. Диффузионная длина носителей заряда.
	эффективность сбора	3. Удельное сопротивление полупроводника.
	заряда детекторов?	
5	Что позволяет	1. Эффективность сбора заряда, регистрируемого
	определить	детектором.
	амплитудный спектр?	2. Тип регистрируемых частиц и их энергию.
		3. Амплитуду заряда, наводимого потерей энергии
		частицей в чувствительном слое детектора.
6	Чем ограничивается	1. Областью, в которой электрическое поле отлично от
	толщина	нуля.
	чувствительной области	2. Областью, в которой носители заряда движутся с
	детекторов?	максимальной дрейфовой скоростью.
		3. Областью объёмного заряда полупроводниковой
		структуры.
7	Перечислите	1. Multisim, KOMΠAC
	современные системы	2. Sentaurus, COMSOL
	проектирования	3. Microsoft Office, Adobe Acrobat
	полупроводниковых	
	приборов	
8	Какой модуль TCAD	1. Corc
	Sentaurus используется	2. Sdevice
	для создания	3. SNMesh
	физической модели?	4. SProcess
9	Какие	а) уравнение Пуассона, уравнение Ньютона, уравнение
	дифференциальные	Непрерывности.
	уравнения решаются	б) уравнение Пуассона, уравнение непрерывности для
	при моделировании	дырок, уравнение непрерывности для электронов.
	при моделировании	топрок, уривнение непреровности оли электронов.

	нолипородинисов м	в) уравнение Пуассона, уравнения гидродинамики,
	полупроводниковых приборов?	уравнение туассона, уравнения гидродинамики, уравнения для диффузионно-дрейфовых токов.
	приооров:	уравнения для диффузионно-дреифовых токов.
10	Какой итерационный	а) Метод Ньютона.
10	<u> </u>	
	метод решения	б) Метод Пуассона.
	дифференциальных	в) Метод Бесселя.
	уравнений используется	г) Метод дихотомии.
	при моделировании в	
1.1	CAПР TCAD?	\
11	Какие подходы из	а) Гиродинамический подход.
	перечисленных не	б) Термодинамический подход.
	используются при	в) Диффузионно-дрейфовый подход.
	моделировании	г) Экситонный подход.
	полупроводниковых	
	приборов при	
	использовании	
	коммерческих САПР	
	TCAD?	
	В каких случаях следует	а) При моделировании диода.
	уменьшать шаг	б) При моделировании транзистора.
	расчетной сетки при	в) При моделировании любого полупроводникового
	моделировании	прибора в области гетероперехода.
	полупроводниковых	г) Сетку следует уменьшать в любом случае, так как
	приборов?	это позволяет более точно решить задачу.
	При использовании	а) Квазистационарного.
	какого метода	б) Переходного.
	рассчитывается	в) АС-метода.
	статическая вольт-	
	амперная	
	характеристика	
	полупроводникового	
	прибора?	
L		

Информация о разработчиках

Прудаев Илья Анатольевич, кандидат физико-математических наук, Томский государственный университет, доцент