Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Интеллектуальные системы

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

> Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2. Способен применять компьютерные/суперкомпьютерные методы, современное программное обеспечение, в том числе отечественного происхождения, для решения задач профессиональной деятельности.
- ПК-1. Способен осуществлять программирование, тестирование и опытную эксплуатацию ИС с использованием технологических и функциональных стандартов, современных моделей и методов оценки качества и надежности программных средств.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-2.2. Использует методы высокопроизводительных вычислительных технологий, современного программного обеспечения, в том числе отечественного происхождения.
 - ИПК-1.1. Определяет, согласовывает и утверждает требования заказчика к ИС.
 - ИПК-1.2. Проектирует программное обеспечение.
- ИПК-1.3. Кодирует на языках программирования и проводит модульное тестирование ИС.

2. Задачи освоения дисциплины

- Освоить модели представления знаний в интеллектуальных системах, технологию разработки экспертных систем, применение нечеткой логики, генетических алгоритмов и нейронных сетей для решения задач оптимизации, прогнозирования и распознавания образов.
- Научиться применять полученные знания для решения практических задач профессиональной деятельности в области искусственного интеллекта.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль «Искусственный интеллект».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Четвертый семестр, зачет с оценкой

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: «Основы программирования», «Алгоритмы и структуры данных»

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 16 ч.
- -лабораторные: 32 ч.

в том числе практическая подготовка: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Модели представления знаний.

Методы приобретения знаний. Логическая модель представления знаний. Продукционная модель представления знаний. Представление знаний в виде семантической сети. Разработка экспертной системы на основе продукционных правил.

Тема 2. Архитектура экспертных систем. Применение нечеткой логики в экспертных системах

Архитектура и технология разработки экспертных систем. Нечеткая логика и ее применение в экспертных системах. Операции над нечеткими множествами и меры нечеткости множеств. Нечеткие правила вывода в экспертных системах. Разработка экспертной системы на основе применения нечетких правил вывода.

Тема 3. Генетический алгоритм.

Этапы работы генетического алгоритма. Операторы генетического алгоритма. Настройка параметров генетического алгоритма. Применение генетического алгоритма для решения задач оптимизации и аппроксимации.

Тема 4. Искусственные нейронные сети.

Биологические и искусственные нейронные сети. Алгоритмы обучения искусственных нейронных сетей. Сверточная нейронная сеть. Применение искусственных нейронных сетей для обработки информации.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения лабораторных работ, опросов по лекционному материалу (тест), и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет с оценкой в четвертом семестре проводится по результатам сдачи лабораторных заданий и устных ответов на вопросы. Продолжительность зачета с оценкой 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в LMS iDo.
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План лабораторных занятий по дисциплине.

Планируется выполнение трех лабораторных работ:

- 1. Разработка экспертной системы.
- 2. Применение генетического алгоритма для решения задач оптимизации.
- 3. Программная реализация нейросетевого алгоритма для решения задач распознавания.

г) Методические указания по проведению лабораторных работ.

Методические указания по проведению лабораторных работ представлены в учебном пособии: Спицын В.Г., Цой Ю.Р. Интеллектуальные системы: Учебное пособие. –, Томск: Изд-во ТПУ, 2012. – 176 с.

д) Методические указания по организации самостоятельной работы студентов.

Методические указания по организации самостоятельной работы студентов представлены в учебном пособии: Спицын В.Г., Цой Ю.Р. Интеллектуальные системы: Учебное пособие. –, Томск: Изд-во ТПУ, 2012. – 176 с.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Спицын В.Г., Цой Ю.Р. Интеллектуальные системы: Учебное пособие. –, Томск: Изд-во ТПУ, 2012. 176 с.
- Джонотано Д., Райли Г. Экспертные системы: принципы разработки и программирование. Москва:Издательский. дом «Вильямс», 2007. 1152 с.
- Рассел С., Норвиг П. Имитационное Искусственный интеллект: современный подход (AIMA-2) Москва [и др.]: Издательский. дом «Вильямс», 2015. 1408 с.
- Осовский С. Нейронные сети для обработки информации 2-е изд., перераб. и доп. Москва: Изд-во Горя-чая линия-Телеком, 2017.— 448 с.
- Гладков Л.А., Курейчик В.В., Курейчик В.М.Генетические алгоритмы −2-е издание. Москва: «Физматлит», 2010. − 368 с.
- Хайкин С. Нейронные сети: полный курс: пер. с англ. 2-е изд., испр. Москва [и др.]: Издательский. дом «Вильямс», 2019. 1104 с.
- Галушкин А.И. Нейронные сети: основы теории. Москва: Изд-во Горячая линия-Телеком, 2017. 496 с.
 - Шолле Ф. Глубокое обучение на Python. Санкт-Петербург: Питер, 2018. 400 с.
- Джонс М. Т. Программирование искусственного интеллекта в приложениях. Москва: ДМК Пресс, 2011.-312 с.
 - б) ресурсы сети Интернет:
- Российская ассоциация искусственного интеллекта [Электронный ресурс], 2019 URL: http://raai.org/
- Российская ассоциация нейроинформатики. [Электронный ресурс], 2019 URL: https://www.niisi.ru/iont/ni/
- http://ransmv.narod.ru/ Российская ассоциация нечетких систем и мягких вычислений.
 - http://www.makhfi.com/KCM_intro.htm Введение в моделирование знаний.
- IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019-URL: . http://cvpr2019.thecvf.com/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Visual Studio
- б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий лабораторного типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Спицын Владимир Григорьевич, доктор технических наук, профессор, профессор кафедры теоретических основ информатики