Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Основы математического моделирования

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1. Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-1.1. Применяет фундаментальные знания, полученные в области математических и (или) естественных наук.

ИОПК-1.2. Использует фундаментальные знания, полученные в области математических и (или) естественных наук в профессиональной деятельности.

ИОПК-1.3. Обладает необходимыми знаниями для исследования информационных систем и их компонент.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- задачи;
- задания на разработку программ.

Задачи (ИОПК-1.1, ИОПК-1.2, ИОПК-1.3)

1. Рассмотрим модель Базыкина, учитывающую как нижнюю границу численности, так и внутривидовую конкуренцию

$$\frac{dx}{dt} = a \frac{bx^2}{b + \tau x} - bx - px^2.$$

Используя замену переменных $s = \frac{ab}{\tau}t$, $y = \frac{\tau}{b}x$ и константы $D = \frac{c\tau}{ab}$, $P = \frac{p}{a}$, получаем уравнение

$$\frac{dy}{ds} = \left(\frac{y}{y+1} - D - Py\right)y.$$

Проанализируйте стационарные решения этого уравнения. Запрограммируйте процесс изменения численности популяции для различных значений параметров и различных начальных значениях численности, приведите графики.

2. Кинетические уравнения Лотки имеют вид

$$\frac{dx}{dt} = k_0 - k_1 xy, \frac{dy}{dt} = k_1 xy - k_2 y, \frac{dB}{dy} = k_2 y.$$

Проанализируйте стационарные решения. Запрограммируйте процесс изменения концентраций веществ (x, y) для различных значений параметров в окрестностях стационарных точек.

- 3. По трубе (x > 0) пропускается со скоростью v горячая вода. Пусть u температура воды в трубе, v температура стенок трубы, u_0 температура окружающей среды. Вывести уравнения для функций u и v, пренебрегая распределением температуры по сечению трубы и стенок и считая, что на границах вода-стенка и стенка-среда существует перепад температур и теплообмен происходит по закону Ньютона.
- 4. Дать постановку задачи о вынужденных колебаниях закрепленной на конце x=l горизонтальной однородной струны, левый конец которой (x=0) движется так, что касательная в этом конце (при $x \to 0+$) в любой момент времени горизонтальна. В момент t=0 струна имела форму $\varphi(x)$ и нулевые начальные скорости.

- 5. Найти решение уравнения Лапласа в прямоугольнике $D: 0 \le x \le a, 0 \le y \le b$, если на границе u(x,y) принимает следующие значения: $u(0,y) = A \sin \frac{\pi y}{b}, \ u(a,y) = 0,$ $u(x,0) = B \sin \frac{\pi x}{a}, \ u(x,b) = 0.$
- 6. Среди всех плоских линий заданной длины l, концы которых лежат в заданных точках $M_0(x_0, y_0)$, $M_1(x_1, y_1)$, найти ту, у которой ордината центра тяжести минимальна.
- 7. Найти приближенное решение в задаче на экстремум функционала методом Ритца и сравнить с точным решением

$$J[y] = \int_{0}^{1} (y'^{3} + y')dx, y(0) = 0, y(1) = 2.$$

8. Найти оптимальное управление в задаче на быстродействие

$$T \to min, x(0) = a, x'(0) = b, x(T) = 0, x'(T) = 0, |u| \le 1,$$

если изменение состояния системы происходит согласно закону:

$$x'' + 2x' + x = u.$$

- 9. Рассмотрим модель обслуживания с дискретным временем, в которой не более чем один клиент приходит в очередной период времени, и самое большее один клиент завершает обслуживание. Предположим, что за один период с вероятностью α приходит один клиент, а с вероятностью $1-\alpha$ не поступает ни одного клиента. При условии, что хотя бы один клиент есть в системе, за один период один клиент завершает обслуживание с вероятностью β , и ни один клиент не уходит с вероятностью $1-\beta$. Опишите систему с помощью цепи Маркова. При каких условиях средняя длина очереди конечна? Приведите пример распределения $P\{\xi_n=k\}=a_k$. Существует ли предельное распределение? Как оценить среднее время, которое клиент проведет в очереди? Проведите численное моделирование и сравните с теоретическими результатами.
- 10. К контролирующему роботу на конвейере через минуту поступают изделия, причём каждое из них независимо от других может оказаться дефектным с вероятностью $p,\,0 . Поступившие изделия робот одно за другим проверяет, затрачивая на проверку каждого по одной минуте. Если изделие оказывается дефектным, то он прекращает проверку других изделий и исправляет дефектное, на что уходит ещё 5 минут. Пусть <math>\xi_n$ число изделий, скопившихся у робота через n минут после начала работы. Будет ли последовательность случайных величин ξ_n , $n \geq 1$, цепью Маркова? Проведите численное моделирование процесса.
- 11. Модель торгов. Пусть U1,U2,... независимые случайные величины, каждая из которых равномерно распределена на интервале (0,1]. Эти случайные величины представляют собой последовательные ставки на актив, который вы пытаетесь продать и который вы должны продать к моменту t=1, когда актив обесценивается. В качестве стратегии вы принимаете секретное число θ , и вы примете первое предложение, которое больше θ . Например, вы принимаете второе предложение, если $U1 \le \theta$, а $U2 > \theta$. Предположим, что предложения поступают согласно процессу Пуассона с параметром $\lambda = 1$.
 - а. Какова вероятность того, что вы продадите актив к моменту времени t=1?
 - b. При каком значении θ ваш ожидаемый доход будет максимальным? Вы не получаете ничего, если вы не продадите актив к моменту времени t=1.
 - с. Чтобы повысить доходность, вы принимаете новую стратегию, заключающуюся в том, чтобы принять предложение в момент времени t,

- если оно превышает $\theta(t) = (1-t)/(3-t)$. Какие у вас новые шансы на продажу актива и какова ваша новая ожидаемая доходность?
- d. Проведите численное моделирование и сравните с теоретическими результатами.
- 12. Предположим, что чистый приток к водохранилищу описывается стандартным броуновским движением. Если в момент времени 0 в резервуаре имеется x=3,29 единиц воды, то какова вероятность того, что резервуар никогда не опустеет за первые t=4 единицы времени?

Задания на программирование (ИОПК-1.1, ИОПК-1.2, ИОПК-1.3)

- 1. Решить численно дифференциальное уравнение, сравнить результат с аналитическим решением.
- 2. Промоделировать поведение динамической системы вблизи стационарных точек.
- 3. Решить численно уравнение в частных производных, сравнить с аналитическим решением.

В курсе действует балльно-рейтинговая система, задания и максимальные баллы приведены в таблице.

No	Задание	Содержание задания	Баллы
1	Примеры математического моделирования	Написать пост на форуме, показывающий ценность и значимость математического моделирования, в частности, для сквозных технологий. Комментировать посты других студентов.	5
2	Модели, описываемые обыкновенными дифференциальными уравнениями	Выписать дифференциальное уравнение, описывающее физический процесс, и найти его решение. Решить три задачи на выбор.	15
3	Популяционные модели	Выписать систему уравнений, описывающую заданную популяционную модель. Найти стационарные решения и промоделировать поведение полученной системы вблизи этих точек с использованием цифровых инструментов. Решить две задачи на выбор.	20
4	Уравнения в частных производных	Вывести уравнение в частных производных, описывающее заданный физический процесс. Решить три задачи на выбор.	20
5.	Решение уравнений в частных производных	Решить аналитически и с помощью численных методов две задачи на выбор. Использовать цифровые инструменты.	20
6.	Вариационное исчисление	Найти аналитическое или численное решение задачи вариационного исчисления с использованием цифровых инструментов. Решить четыре задачи на выбор.	20
7.	Оптимальное управление	Найти оптимальное управление Решить три задачи на выбор.	15
8.	Стохастические модели	Написать пост на форуме, демонстрирующий стохастические модели реальных процессов и явлений. Комментировать посты других	5

		студентов.		
9.	Модели математической статистики	Собрать любые статистические данные и построить математическую модель (описать распределение, оценить параметры, определить корреляцию, сделать выводы по модели).	10	
10.	Случайные процессы с дискретным временем	Построить модель для заданного случайного процесса. Решить три задачи на выбор.	15	
11.	Случайные процессы с непрерывным временем	Построить модель для заданного случайного процесса. Решить три задачи на выбор.	15	
12.	Доклад	Подготовить доклад по цифровым технологиям математического моделирования, либо по использованию математического моделирования для решения задач, в частности, в рамках сквозных технологий.	20	
Итоговый балл				

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Видом промежуточной аттестации является зачет с оценкой. Экзаменационный билет содержит два теоретических вопроса, проверяющих ИОПК-1.1, ИОПК-1.2, ИОПК-1.3. Продолжительность зачета 1,5 часа.

Вопросы к зачету.

- 1. Модели движения.
- 2. Модель хищник-жертва.
- 3. Модели эпидемии.
- 4. Анализ стационарных решений систем дифференциальных уравнений
- 5. Методы Адамса численного решения дифференциальных уравнений.
- 6. Волновое уравнение.
- 7. Уравнение Лапласа.
- 8. Краевые задачи.
- 9. Метод Фурье решения уравнений гиперболического типа.
- 10. Разностные схемы для уравнений в частных производных.
- 11. Вариация функционала.
- 12. Задача о геодезической линии.
- 13. Необходимое условие экстремума функционала.
- 14. Принцип максимума Понтрягина.
- 15. Числовые характеристики случайных процессов.
- 16. Выделение тренда временного ряда.
- 17. Цепи Маркова. Переходные вероятности.
- 18. Уравнения Чэпмена-Колмогорова.
- 19. Задачи фильтрации и прогнозирования частично наблюдаемых процессов.
- 20. Задачи обнаружения скачка параметров.

Результаты зачета с оценкой определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Баллы выставляются следующим образом: по 15 баллов за каждый теоретический вопрос, включая ответы на дополнительные вопросы по теме билета, и 10 баллов за ответы на дополнительные вопросы, не связанные с темой билета. Максимальный балл за зачет – 40.

Балл за зачет суммируется с баллом текущей аттестации. Таблица перевода баллов

в оценки приведена ниже.

Балл	Оценка	Дополнительные условия
161 - 200	отлично	Задания 2-7 и 8-11 оценены минимум на 10 баллов
121 – 160	хорошо	Задания 2-7 и 8-11 оценены минимум на 5 баллов
81 - 120	удовлетворительно	
0 - 80	неудовлетворительно	

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Оценочные материалы аналогичны материалам текущего контроля.

Информация о разработчиках

Буркатовская Юлия Борисовна, канд.физ.-мат.наук, кафедра системного анализа и математического моделирования ИПМКН, доцент.