Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Вероятностные модели логистики

по направлению подготовки

01.04.02 Прикладная математика и информатика

Направленность (профиль) подготовки: **Интеллектуальный анализ больших данных**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ПК-3 Способен осуществлять научно-исследовательские и опытноконструкторские разработки как при исследовании самостоятельных тем, так и разработки по тематике организации.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИПК-3.2 Проводит анализ научных данных, результатов экспериментов и наблюдений

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- тесты;
- контрольная работа.

Тесты (ПК 3)

1. Для какой доверительной вероятности записана формула определения страхового запаса?

$$x_{CT} = S \times (T_{3\Pi,CP} + 2 \times s_{3\Pi}).$$

 $(S-спрос, x_{cr}-страховой запас, T_{3II,CP}-среднее время задержки поставки, <math>s_{3II}$ -

среднеквадратическое отклонение для задержек поставок)

- a) P=0.75
- б) P=0.95
- в) P=0,987
- г) P=0,9
- 2. Записать целевую функцию для определения оптимального объема закупок при случайном спросе (известна плотность вероятностей распределения спроса p(.))? C_1 стоимость единицы товара, C_2 стоимость хранения единицы товара, C_3 стоимость (упущенная выгода) из-за нехватки единицы товара, m объем поставки, m остаток товаров на складе, m коэффициент, учитывающий иммобилизацию средств в запасах (учет возможности альтернативного использования средств, например, при вложении под банковский процент)

а)
$$J(m) = C_1(m-n-z) + k \underset{0}{\overset{m}{\circ}} C_2(m-z)p(n)dn + \underset{0}{\overset{m}{\circ}} C_3(n-z)p(n)dn;$$

б); $J(m) = kC_1(m-z) + \underset{0}{\overset{m}{\circ}} C_2(m-n)p(n-m)dn + \underset{0}{\overset{m}{\circ}} C_3(n-m)p(n)dn;$
в) $J(m) = C_1(m+z) + \underset{0}{\overset{m}{\circ}} C_2(m-n)p(n)dn + k \underset{0}{\overset{m}{\circ}} C_3(n-m)p(n)dn;$
г) $J(m) = C_1(m-z) + k \underset{0}{\overset{m}{\circ}} C_2(m-n)p(n)dn + \underset{0}{\overset{m}{\circ}} C_3(n-m)p(n)dn;$
д); $J(m) = C_1(m-z) + k \underset{0}{\overset{m}{\circ}} C_2(n-m)p(n)dn + \underset{0}{\overset{m}{\circ}} C_3(m-n)p(n)dn.$

Ключи: 1 б), 2 г).

Критерии оценивания: тест считается пройденным, если обучающий ответил правильно как минимум на половину вопросов.

Контрольная работа (ПК-3, ИПК-3.2)

Контрольная работа состоит из 2 теоретических вопросов и и одной задачи.

Примеры теоретических вопросов:

- 1. Вероятностные модели управления производственными системами при взаимодействии на рынке.
 - 2. Вероятностные динамические модели производственных систем (фирм).

Примеры задач:

Задача 1 (ПК-3)

Вычислить объем заказа (u) w=0,2- издержки на одну поставку, k=1,2- стоимость хранения единицы товара в единицу времени, s=10- математическое ожидание случайного спроса, c=2- цена единицы товара.

- a) u=3,3;
- б) u=2,5;
- $^{\rm B})$ u=1,3;
- Γ) u=5,7;

Задача 2 (ИПК-3.2)

Определить объем производственной поставки (u)? w = 1,9 - издержки на одну поставку,

k = 1,2 – стоимость хранения единицы товара в единицу времени, p = 2,1 – темп производства, c = 2,6 – цена единицы товара, s = 1,1 – математическое ожидание случайного спроса.

- a) u=2,7;
- б) u=1,6;
- 8) u=2
- Γ) u=4,5.

Ответы: 1 б); 2 в).

Критерии оценивания:

Результаты контрольной работы определяются оценками «удовлетворительно» и «неудовлетворительно».

Оценка «удовлетворительно» выставляется, если дан правильный ответ на один теоретический вопрос и решена задача.

Оценка «неудовлетворительно» выставляется, если даны неправильные ответы на теоретические вопросы или не решена задача.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Билет для сдачи зачета состоит из двух частей.

Первая часть представляет собой тест из 5 вопросов, проверяющих ПК-3. Ответы на вопросы первой части даются путем выбора из списка предложенных.

Вторая часть содержит два теоретических вопроса, проверяющий ПК-3 и ИПК-3.2.

Ответ на вопрос второй части дается в развернутой форме.

Перечень тестовых заданий

- 1. Какие используются вероятностные модели в описании материальных потоков (ИПК-3.2).
- 2. Какие используются вероятностные модели в описании финансовых потоков (ПК-3).
- 3. Как применяются методы стохастического программирования для определения объемов выпуска продукции при случайном спросе на товар ограниченного срока годности (ПК-3).
 - 4. Вероятностные динамические модели в задачах управления запасами (ИПК-3.2).
- 5. Определение оптимального размера поставок (заказа) при переменных и случайных издержках (ПК-3).

Перечень теоретических вопросов:

- 1. Вероятностные модели в описании материальных потоков и финансовых потоков (ИПК-3.2).
- 2. Основные методы построения вероятностных моделей логистики. Примеры построения моделей (ПК-3).
- 3. Вероятностные модели управления производственными системами при взаимодействии на рынке (ПК-3).
- 4. Вероятностные динамические модели производственных систем (фирм) (ИПК-3.2).
- 5. Применение методов стохастического программирования для определения объемов выпуска продукции при случайном спросе на товар ограниченного срока годности (ИПК-3.2).
- 6. Определения оптимального момента поставки (точки заказа) на многономенклатурный склад при случайном спросе (ПК-3).
- 7. Модели управление запасами с учетом транспортных ограничений и запаздываний при случайном спросе (ИПК-3.2).

Критерии оценивания:

Результаты зачета определяются оценками «зачтено» или «не зачтено».

Оценка «зачтено» выставляется, если даны правильные ответы на 3 вопроса тестов из 5, и дан правильный ответ на один теоретический вопрос из двух без ошибок.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Тесты (ПК 3)

1. Для какой доверительной вероятности записана формула определения страхового запаса?

$$x_{CT} = S \times (T_{3\Pi,CP} + 2 \times s_{3\Pi}).$$

 $(S-cпроc, x_{cr}-cтраховой запас, T_{3II,CP}-cреднее время задержки поставки, <math>s_{3II}-c$ реднеквадратическое отклонение для задержек поставок)

- a) P=0.75;
- б) P=0,95;
- в) P=0,987;
- г) P=0.9.
- 2. Записать целевую функцию для определения оптимального объема закупок при случайном спросе (известна плотность вероятностей распределения спроса p(.))?

 C_1 – стоимость единицы товара, C_2 – стоимость хранения единицы товара, C_3 – стоимость (упущенная выгода) из-за нехватки единицы товара, m – объем поставки, z – остаток товаров на складе, k – коэффициент, учитывающий иммобилизацию средств в запасах (учет возможности альтернативного использования средств, например, при вложении под банковский процент)

а)
$$J(m) = C_1(m-n-z) + k \mathop{\partial}_0 C_2(m-z)p(n)dn + \mathop{\partial}_0 C_3(n-z)p(n)dn;$$

б); $J(m) = kC_1(m-z) + \mathop{\partial}_0 C_2(m-n)p(n-m)dn + \mathop{\partial}_0 C_3(n-m)p(n)dn;$
в) $J(m) = C_1(m+z) + \mathop{\partial}_0 C_2(m-n)p(n)dn + k \mathop{\partial}_0 C_3(n-m)p(n)dn;$
г) $J(m) = C_1(m-z) + k \mathop{\partial}_0 C_2(m-n)p(n)dn + \mathop{\partial}_0 C_3(n-m)p(n)dn;$
д); $J(m) = C_1(m-z) + k \mathop{\partial}_0 C_2(n-m)p(n)dn + \mathop{\partial}_0 C_3(m-n)p(n)dn.$

Ключи: 1 б), 2 г).

Задачи

Задача 1 (ПК-3)

Вычислить объем заказа (u) w=0,2- издержки на одну поставку, k=1,2- стоимость хранения единицы товара в единицу времени, s=10- математическое ожидание случайного спроса, c=2- цена единицы товара.

- a) u=3,3;
- б) u=2,5;
- $^{\rm B})$ u=1,3;
- Γ) u=5,7.

Задача 2 (ИПК-3.2)

Определить объем производственной поставки (u)? w = 1,9 - uздержки на одну поставку,

k=1,2 – стоимость хранения единицы товара в единицу времени, p=2,1 – темп производства, c=2,6 – цена единицы товара, s=1,1 – математическое ожидание случайного спроса.

- a) u=2,7;
- 6); u=1,6;
- $^{\rm B})$ u=2;
- Γ) u=4,5.

Ответы: 1 б); 2 в).

Теоретические вопросы:

- 1. Вероятностные модели в описании материальных потоков и финансовых потоков (ПК 3).
- 2. Основные методы построения вероятностных моделей логистики. Примеры построения моделей (ИПК 3.2).
- 3. Вероятностные модели управления производственными системами при взаимодействии на рынке (ИПК 3.2).
 - 4. Вероятностные динамические модели производственных систем (фирм) (ПК 3).
- 5. Применение методов стохастического программирования для определения объемов выпуска продукции при случайном спросе на товар ограниченного срока годности (ИПК 3.2).

- 6. Определения оптимального момента поставки (точки заказа) на многономенклатурный склад при случайном спросе (ПК 3).
- 7. Модели управление запасами с учетом транспортных ограничений и запаздываний при случайном спросе (ИПК 3.2).

Информация о разработчиках

Смагин Валерий Иванович, д.т.н, профессор, профессор кафедры прикладной математики НИ ТГУ