Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Базы данных

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

> Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2. Способен применять компьютерные/суперкомпьютерные методы, современное программное обеспечение, в том числе отечественного происхождения, для решения задач профессиональной деятельности.
- ОПК-6. Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности.
- ПК-2. Способен проектировать базы данных, разрабатывать компоненты программных систем, обеспечивающих работу с базами данных, с помощью современных инструментальных средств и технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-2.1. Обладает необходимыми знаниями основных концепций современных вычислительных систем.
- ИОПК-6.1. Обладает необходимыми знаниями в области информационных технологий, в том числе понимает принципы их работы.
- ИОПК-6.2. Применяет знания, полученные в области информационных технологий, при решении задач профессиональной деятельности.
- ИОПК-6.3. Использует современные информационные технологии на всех этапах разработки программных систем.
- ИПК-2.1. Проектирует схему базы данных, поддерживает схему БД в соответствии с изменениями в требованиях и предметной области.
- ИПК-2.2. Готов осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий.
- ИПК-2.3. Использует средства СУБД для выявления проблем производительности при выполнении и повышением пропускной способности базы данных.

2. Задачи освоения дисциплины

- Освоить аппарат технологии баз данных и методику проектирования схем баз данных.
- Научиться применять понятийный аппарат моделирования данных для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы. Дисциплина входит в модуль «Разработка программного обеспечения».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Математический анализ, Вычислительная математика, Основы программирования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- -лекции: 32 ч.
- -лабораторные: 32 ч.
 - в том числе практическая подготовка: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Введение в технологию баз данных. Обзор курса, литературы.

Тема 2. Данные и модели данных.

Данные. Информация. Процесс получения информации из данных. Семиотика: синтактика, семантика, прагматика. Модель данных. Атомарная единица информации. База данных (БД). Схема БД. Конструктивное определение модели данных: множество правил порождения структур, множество правил порождения ограничений целостности, множество операций. Система управления БД (СУБД). Язык определения данных (ЯОД). Язык манипулирования данными (ЯМД).

Тема 3. Структуры.

Знак. Тип. Основные способы структуризации данных: абстракция, обобщение, агрегация. Формы представления данных: комплекс, множество, кортеж, домен, атрибут, отношение. Интерпретация данных. Представление информации: таблицы, графы.

Тема 4. Ограничения целостности.

Ограничение целостности. Виды ограничений: внутренние и явные. Верификация ограничений целостности. Типы ограничений: ограничения на значения атрибутов, ограничения на отображения. Отображение. Кардинальное число (КЧ). Минимальное КЧ. Максимальное КЧ. Типы отображений: ничем неограниченное, полностью определенное, функциональное (частичное, полное). Типы бинарных отношений: "многие-ко-многим", "один-ко-многим", "один-к-одному". Ограничения на отображения между атрибутами одного отношения. Ключевой атрибут. Недопустимость неопределенных значений атрибута. Ограничения на отображения между отношениями.

Тема 5. Операции.

Состояние БД. Операции над данными: селекция, действие. Виды действий. Способы селекции. Навигационные операции. Спецификационные операции. Процедуры БД.

Тема 6. Модель данных "сущность-связь".

Уровни представления предметной области в моделях данных. Структуры: множество сущностей, множество связей, роль, множество значений, атрибут. Представление интенсионала БД: ЕR-диаграмма. Представление экстенсионала БД: графы, таблицы. Ограничения целостности: ключ сущности, ключ связи, зависимость существования. Множество слабых сущностей. Множество слабых связей. Навигационный язык. Спецификационный язык САВLE. Назначение модели. Модификации ER-модели Чена: расширенная ER-модель (специализация и категоризация), нотация Баркера, нотация IDEF1X.

Тема 7. Реляционная модель.

Структуры: отношение, кортеж, домен, степень отношения, мощность отношения, атрибут. Ограничения целостности: ключ, триггер. Навигационные операции: курсоры. Спецификационные операции: РЕЛЯЦИОННАЯ АЛГЕБРА - основные и дополнительные операции; РЕЛЯЦИОННОЕ ИСЧИСЛЕНИЕ С ПЕРЕМЕННЫМИ-КОРТЕЖАМИ — синтаксис атомов и формул, ЯМД ALPHA; РЕЛЯЦИОННЫЙ ЯЗЫК, ОСНОВАННЫЙ НА ОТОБРАЖЕНИЯХ: ЯМД SQL.

Тема 8. Теория реляционных БД и классическая методика проектирования реляционных схем БД.

Универсальное отношение. Аномалии вставки, модификации, удаления. Функциональные зависимости, аксиомы функциональных зависимостей, избыточные функциональные зависимости, минимальные покрытия множеств зависимостей, декомпозиция схем отношений, нормальные формы схем отношений (первая, вторая, третья, форма Бойса-Кодда). Декомпозиционный алгоритм проектирования реляционных схем БД.

Тема 9. Семантическая методика проектирования реляционных схем БД. Функциональное моделирование предметной области (ПрО) на примере деловой модели. Семантическое моделирование данных на примере ER-модели. Логическое проектирование на примере реляционной модели. Правила преобразования схемы БД из семантических моделей в реляционную модель. Физическое проектирование данных.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, коллоквиумов по лекционному материалу, выполнения лабораторных заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в третьем семестре проводится в письменной форме по билетам. Экзаменационный билет содержит один комплексный вопрос. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в LMS iDo.
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских / практических занятий по дисциплине.
 - г) Методические указания по проведению лабораторных работ.
 - д) Методические указания по организации самостоятельной работы студентов

12. Перечень учебной литературы и ресурсов сети Интернет

а) основная литература:

Базы данных : [учебник для вузов по направлению подготовки "Прикладная математика и информатика"/С. Д. Кузнецов. – М. : Академия, 2012. 490, [1] с.: ил.

Oracle PL/SQL для профессионалов /С. Фейерштейн, Б. Прибыл ; [пер. с англ. Е. Матвеев]. – СПб [и др.] : Питер , 2015. - 1023 с.

б) дополнительная литература:

Карпова И.П. Базы данных: курс лекций и материалы для практических занятий: [учебное пособие для студентов технических факультетов, изучающих автоматизированные информационные системы и системы управления базами данных] / И.П. Карпова. — Санкт-Петербург [и др.]: Питер, 2015. — 240 с.

Кренке Д. М. Теория и практика построения баз данных [Электронный ресурс]. – Электрон. дан. – URL: http://sun.tsu.ru/mminfo/ books/2010/000387203/000387203.djvu (дата обращения 30.08.15).

Бейли Л. Изучаем SQL /Л. Бейли ; [пер. с англ. Е. Матвеев]. — СПб. [и др.] : Питер , 2012.-582 с.

в) ресурсы сети Интернет:

Издательство «Лань» [Электронный ресурс] : электрон.-библиотечная система. – Электрон. дан. – СПб., 2015- . – URL: http://e.lanbook.com/

Электронная библиотека (репозиторий) ТГУ [Электронный ресурс]. — Электрон. дан. — Томск, 2015- . URL: http://vital.lib.tsu.ru/vital/access/manager/Index

Электронно-библиотечная система Znanium.com [Электронный ресурс] / Научно-издательский центр Инфра-М. – Электрон. дан. – М., 2015- . URL: http://znanium.com/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- СУБД Oracle.
- Microsoft Office Standart 2013 Russian: пакет программ.
- публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
- б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
 Электронная библиотека (репозиторий) ТГУ -
- http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - в) профессиональные базы данных (при наличии):
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (EMИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий лабораторного типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках Бабанов Алексей Михайлович, к.т.н., доцент, кафедра программной инженерии, доцент