Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Оценочные материалы по дисциплине

Биотехнология

по направлению подготовки

06.03.01 Биология

Направленность (профиль) подготовки: **Биология**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.В. Ярцев

Председатель УМК А.Л. Борисенко

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-5 Способен применять в профессиональной деятельности современные представления об основах биотехнологических и биомедицинских производств, генной инженерии, нанобиотехнологии, молекулярного моделирования.
- ПК-2 Способен изучать научно-техническую информацию по направлению исследований и представлять результаты своих исследований в научном сообществе.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-5.1 Демонстрирует понимание современных представлений об основах биотехнологических и биомедицинских производств, генной инженерии, нанобиотехнологии, молекулярного моделирования
- ИОПК-5.2 Применяет знание основ (представление об основах) биотехнологических и биомедицинских производств, генной инженерии, нанобиотехнологии, молекулярного моделирования при решении профессиональных задач
- ИПК-2.1 Владеет навыком поиска и анализа научной информации по направлению исследований

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- тесты;
- контрольная работа;

Тест (ИОПК-5.1, ИОПК-5.2, ИПК-2.1).

- 1. К факторам, определяющим программируемый характер признаков живых организмов, согласно современным представлениям биотехнологии, относятся:
 - а) исключительно генетические факторы
 - б) исключительно факторы внешней среды
 - в) генетические факторы и факторы внешней среды
 - г) исключительно методы искусственного отбора
 - 2. К основным принципам выделения ДНК НЕ относится:
 - а) лизис клеточного материала
 - б) денатурация и удаление белков
 - в) осаждение и очистка ДНК
 - г) проведение обратной транскрипции
 - 3. Ключевым отличием в процедурах выделения РНК от выделения ДНК является:
 - а) использование методов гель-электрофореза для анализа
 - б) необходимость в инактивации RNase на всех этапах работы
 - в) применение методов спектрофотометрии
 - г) использование детергентов для лизиса клеток
- 4. Методом, позволяющим одновременно оценить и количество, и качество (целостность) препарата нуклеиновых кислот, является:
 - а) только спектрофотометрия
 - б) только флуорометрия
 - в) агарозный гель-электрофорез
 - г) капиллярный электрофорез

- 5. Полимеразная цепная реакция (ПЦР) предназначена преимущественно для:
- а) синтеза белка in vitro
- б) определения первичной структуры белка
- в) амплификации специфических участков ДНК
- г) разделения молекул ДНК по размеру
- 6. При подборе олигонуклеотидных праймеров для ПЦР *in silico* с использованием алгоритма BLAST осуществляется проверка на:
 - а) температурный режим хранения праймеров
 - б) возможность неспецифической гибридизации и образования димеров
 - в) концентрацию праймеров в реакционной смеси
 - г) рН буфера для реакции
- 7. Для количественной оценки экспрессии генов с помощью ПЦР в реальном времени (qPCR) обязательным этапом является:
 - а) проведение иммуноферментного анализа
 - б) проведение реакции обратной транскрипции
 - в) секвенирование по Сэнгеру
 - г) электрофорез белков (SDS-PAGE)
- 8. Метод секвенирования по Сэнгеру (метод обрыва цепи) применяется преимущественно для:
 - а) получения рекомбинантных белков в промышленных масштабах
 - б) определения коротких участков ДНК (до 1000 п.н.) с высокой точностью
 - в) анализа уровня экспрессии тысяч генов одновременно
 - г) разделения сложных смесей белков
- 9. Качественный и количественный анализ белков методом SDS-PAGE основан на разделении белков преимущественно по признаку:
 - а) изоэлектрической точки
 - б) молекулярной массы
 - в) иммуногенности
 - г) ферментативной активности
- 10. Методом, основанным на специфическом связывании «антиген-антитело», является:
 - а) полимеразная цепная реакция
 - б) спектрофотометрия
 - в) вестерн-блоттинг
 - г) агарозный гель-электрофорез
- 11. Для подтверждения специфичности амплификации в реакции ПЦР в реальном времени используются:
 - а) интеркалирующие красители (например, SYBR Green)
 - б) только ТаqМап зонды
 - в) анализ кривой плавления (melting curve) или использование специфичных зондов
 - г) измерение оптической плотности при 260 нм

Ключи:
$$1 - B$$
), $2 - \Gamma$), $3 - \delta$), $4 - B$), $5 - B$), $6 - \delta$), $7 - \delta$), $8 - \delta$), $9 - \delta$), $10 - B$), $11 - B$).

Критерии оценивания: тест считается пройденным, если обучающий ответил правильно как минимум на половину вопросов.

Контрольная работа (ИОПК-5.1, ИОПК-5.2, ИПК-2.1) Контрольная работа состоит из 2 теоретических вопросов и 1 задачи.

Перечень теоретических вопросов:

- 1. Охарактеризуйте современные представления о биотехнологии как о программируемом процессе. Раскройте роль генетических факторов, факторов внешней среды, мутагенеза и искусственного отбора.
- 2. Сравните основные методы выделения ДНК и РНК. Укажите ключевые различия в процедурах, обусловленные свойствами молекул, и общие этапы.
- 3. Дайте сравнительную характеристику методов анализа количества и качества нуклеиновых кислот: спектрофотометрии, флуорометрии и гельэлектрофореза. Их преимущества, недостатки и области применения.
- 4. Опишите принцип полимеразной цепной реакции (ПЦР). Перечислите основные компоненты реакции и их функции. Объясните, как температурный профиль обеспечивает специфичность амплификации.
- 5. Опишите этапы подбора олигонуклеотидных праймеров для ПЦР. Каковы основные требования, предъявляемые к праймерам, и для чего используется алгоритм BLAST на этапе планирования эксперимента?
- 6. Объясните принцип количественной ПЦР в реальном времени. В чём заключается пороговый метод (Ct) и как с его помощью можно сравнивать уровень экспрессии генов?
- 7. Опишите принцип метода секвенирования по Сэнгеру. Каковы его основные преимущества, недостатки и области применения в современной биотехнологии?
- 8. Приведите примеры применения секвенирования ДНК для решения практических задач в биотехнологии (на примере идентификации микроорганизмов, анализа мутаций или генотипирования).
- 9. Сравните методы качественного и количественного анализа белков: спектрофотометрию, колориметрические методы и SDS-PAGE электрофорез. Что является анализируемым параметром в каждом случае?
- 10. Опишите принцип одного из иммунологических методов анализа белков (на выбор: ИФА, вестерн-блоттинг или иммунофлуоресценция). В чём заключается его высокая специфичность?

Задачи:

Задача 1. Исследователю необходимо клонировать ген X из геномной ДНК человека. Длина гена составляет 2500 пар нуклеотидов. Для ПЦР-амплификации он подобрал прямую и обратную пару праймеров длиной 20 нуклеотидов каждый. Рассчитайте теоретическую температуру отжига (Tm) для этих праймеров, используя простое правило Wallace (Tm = 2° C*(A+T) + 4° C*(G+C)). Состав прямого праймера: 5'-ATG CCT GAC TGA TGC CTA GA-3'. Состав обратного праймера: 5'-TTA GCA TGC AGG TCA TGC AG-3'. Какой следует выбрать температурный профиль для цикла отжига?

Задача 2. При спектрофотометрическом анализе препарата ДНК были получены следующие значения оптической плотности: OD260 = 0.85, OD280 = 0.74. Рассчитайте концентрацию ДНК в образце (в нг/мкл), учитывая, что кювета с длиной оптического пути 1 см и коэффициент экстинкции для двухцепочечной ДНК составляет 50 нг*см/мкл при 260 нм. Оцените чистоту препарата. Можно ли использовать данный образец для проведения ПЦР?

Задача 3. В эксперименте по изучению экспрессии гена с помощью qPCR для контрольного образца (необработанные клетки) значение порогового цикла (Ct) составило 22. Для опытного образца (обработанного препаратом) значение Ct составило 20.

Рассчитайте, во сколько раз изменился уровень экспрессии изучаемого гена при условии, что эффективность ПЦР для данной пары праймеров составляет 100%.

Задача 4. При электрофорезе в агарозном геле образца геномной ДНК, выделенной из культуры клеток млекопитающих, наблюдается два интенсивных фрагмента: один в области старта геля (высокомолекулярная ДНК), а второй — в области ~200 п.н. Дайте объяснение полученному результату. О чем свидетельствует наличие низкомолекулярного фрагмента? Можно ли использовать такой препарат для дальнейшего анализа методом ППР?

Задача 5. Для анализа белка-маркера апоптоза (молекулярная масса 21 кДа) методом вестерн-блоттинга был использован клеточный лизат. После электрофореза в полиакриламидном геле и переноса на мембрану последнюю инкубировали со специфичными первичными и вторичными антителами. В результате на мембране был обнаружен не один сигнал при 21 кДа, а три сигнала: при 21, 42 и 84 кДа. Предложите возможное объяснение появления сигналов с большей молекулярной массой.

Ответы к задачам:

Задача 1. Прямой праймер: $Tm = 2^{\circ}C^{*}(10) + 4^{\circ}C^{*}(10) = 20^{\circ}C + 40^{\circ}C = 60^{\circ}C$. Обратный праймер: $Tm = 2^{\circ}C^{*}(9) + 4^{\circ}C^{*}(11) = 18^{\circ}C + 44^{\circ}C = 62^{\circ}C$. Температура отжига: $\sim 60-61^{\circ}C$ (среднее значение или на $3-5^{\circ}C$ ниже Tm наименее стабильного праймера).

Задача 2. Концентрация ДНК = OD260 * 50 нг/мкл = 0.85 * 50 = 42.5 нг/мкл. Соотношение OD260/OD280 = 0.85 / 0.74 \approx 1.15. Чистота низкая (значение <1.8), присутствуют примеси (белки, фенол). Образец требует дополнительной очистки перед ПЦР.

Задача 3. Разница $\Delta Ct = Ct(\text{опыт})$ - Ct(контроль) = 20 - 22 = -2. Изменение экспрессии = $2^{-\Delta Ct} = 2^2 = 4$. Уровень экспрессии увеличился в 4 раза.

Задача 4. Наличие интенсивной низкомолекулярной полосы (~200 п.н.) свидетельствует о массивной фрагментации ДНК (апоптозе) в культуре клеток. Препарат для ПЦР использовать можно, но амплифицировать можно только короткие фрагменты (<200 п.н.), так как длинные фрагменты деградировали.

Задача 5. Появление сигналов при 42 и 84 кДа (удвоенная и учетверенная молекулярная масса от ожидаемой) с высокой вероятностью указывает на образование димеров и тетрамеров исследуемого белка, которые не были денатурированы в условиях SDS-PAGE.

Критерии оценивания контрольной работы

Результаты контрольной работы определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется, если:

- Даны полные, развернутые и правильные ответы на 2 теоретических вопроса.
- Верно решена задача, приведены необходимые расчеты и аргументированные пояснения.
- Продемонстрировано глубокое понимание принципов работы методов и умение их применять для анализа.

Оценка «хорошо» выставляется, если:

- Даны в основном правильные ответы на 2 теоретических вопроса, возможны незначительные неточности или неполнота.
- Верно решена задача, в решениях допущены незначительные ошибки в расчетах или формулировках, но общий принцип решения верен.

Оценка «удовлетворительно» выставляется, если:

• Теоретические вопросы раскрыты поверхностно, с существенными неточностями, дан правильный ответ только на 1 вопрос.

• В решении задач допущены существенные ошибки, но продемонстрировано частичное понимание подхода.

Оценка «неудовлетворительно» выставляется, если:

- Ответы на теоретические вопросы неверны или отсутствуют.
- Задача не решена или решение фундаментально неверно.
- Продемонстрировано полное непонимание принципов работы методов.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Экзаменационный билет содержит 2 вопроса.

Перечень вопросов:

- 1. Современные представления о биотехнологии.
- 2. Программируемый характер признаков живых организмов. Качественные и количественные признаки.
- 3. Моногенные и полигенные признаки. Генетические факторы. Факторы внешней среды.
- 4. Мутагенез и искусственный отбор как основа биотехнологии.
- 5. Представление о генной инженерии и синтетической биологии.
- 6. Основные методы выделения ДНК, их преимущества и недостатки. Этапы выделения ДНК.
- 7. Выделение плазмидной ДНК.
- 8. Основные методы выделения РНК, их преимущества и недостатки. Требования к условиям в лаборатории.
- 9. Гель-электрофорез: агарозный, полиакриламидный, капиллярный. Преимущества и недостатки различных методов гель-электрофореза. Принцип детекции по конечной точке.
- 10. Спектрофотометрия и флуорометрия для анализа нуклеиновых кислот Преимущества и недостатки различных методов.
- 11. Принцип полимеразной цепной реакции (ПЦР). Основные компоненты ПЦР. Примеры использования ПЦР.
- 12. Разновидности ПЦР: мультиплексная ПЦР, вложенная (гнездовая) ПЦР, ПЦР длинных фрагментов, аллель-специфичная ПЦР.
- 13. Целевая амплификация участков генома как основа для получения рекомбинантных биотехнологических продуктов.
- 14. Использование баз данных и геномных браузеров. Формат представления данных о последовательности ДНК (FASTA).
- 15. Получение последовательности ДНК конкретного участка генома.
- 16. Требования к праймерам для полимеразной цепной реакции. Проверка термодинамических свойств праймеров in silico.
- 17. Анализ возможности неспецифического связывания праймеров с помощью алгоритма BLAST.
- 18. Принцип детекции результатов ПЦР в реальном времени.
- 19. Кинетика накопления продукта в реакции ПЦР. Эффективность ПЦР. Пороговый метод сравнения графиков накопления ДНК (Сt).
- 20. Флуоресценция и флуорофоры. Интеркалирующие красители и специфичные методы детекции.
- 21. Обратная транскрипция.
- 22. Относительное определение уровня представленности транскриптов с помощью количественной ПЦР. Оценка экспрессии генов.
- 23. Актуальность и применение секвенирования ДНК в биотехнологии. Общее представление о секвенировании полных геномов.

- 24. Секвенирование по Сэнгеру (Метод обрыва цепи): принцип метода. Секвенирование по Сэнгеру: классический и современный варианты.
- 25. Применение секвенирования по Сэнгеру: идентификация личности, анализ мутаций, идентификация микроорганизмов по гену 16S pPHK.
- 26. Применение секвенирования для генотипирования сортов растений и пород животных.
- 27. Анализ генетической вариабельности, лежащей в основе количественных признаков.
- 28. Многообразие молекул белков в клетке. Основные методы работы с белками.
- 29. Методы выделения белков. Методы анализа концентрации белков: спектрофотометрия, флуорометрия, колориметрические методы.
- 30. Электрофорез белков в полиакриламидном геле в присутствии додецилсульфата натрия (SDS-PAGE).
- 31. Иммунологические методы. Иммуноферментный анализ. Иммуноокрашивание. Проточная цитофлуориметрия. Вестерн-блот. Иммунопреципитация.

Критерии оценивания:

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется, если дан полный, развернутый и правильный ответ на оба теоретических вопроса, демонстрирующий глубокое понимание методологических принципов.

Оценка «хорошо» выставляется, если дан один полный и развернутый ответ, и один правильный ответ на теоретический вопрос с незначительными неточностями или ответ неполный.

Оценка «удовлетворительно» выставляется, если даны поверхностные ответы на теоретические вопросы с существенными неточностями, но показано частичное понимание темы.

Оценка «неудовлетворительно» выставляется, если ответы на теоретические вопросы неверны или отсутствуют.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Тест

- 1. Способностью к программируемому изменению под действием биотехнологических методов обладают: (ИОПК-5.1)
 - а) только качественные (моногенные) признаки
 - б) только количественные (полигенные) признаки
 - в) как качественные, так и количественные признаки
 - г) только признаки, не зависящие от факторов внешней среды
- 2. Критическим требованием к условиям лаборатории при выделении РНК, в отличие от выделения ДНК, является: (ИОПК-5.2)
 - а) использование стерильной посуды
 - б) постоянная температура +4°C
 - в) инактивация RNase на всех рабочих поверхностях и растворах
 - г) проведение работы в вытяжном шкафу
- 3. Методом, позволяющим визуально оценить целостность (качество) высокомолекулярной геномной ДНК, является: (ИОПК-5.2)
 - а) спектрофотометрия
 - б) флуорометрия

- в) агарозный гель-электрофорез
- г) капиллярный электрофорез
- 4. Компонентом, абсолютно необходимым для проведения полимеразной цепной реакции, является: (ИОПК-5.2)
 - а) ДНК-лигаза
 - б) праймеры
 - в) RNase
 - г) додецилсульфат натрия (SDS)
- 5. Для проверки специфичности подобранных *in silico* олигонуклеотидных праймеров и анализа возможности образования димеров праймеров используется: (ИПК-2.1)
 - а) метод секвенирования по Сэнгеру
 - б) алгоритм BLAST
 - в) спектрофотометрический анализ
 - г) SDS-PAGE электрофорез
- 6. Обязательным этапом подготовки пробы для количественной оценки экспрессии гена методом ПЦР в реальном времени является: (ИОПК-5.2)
 - а) иммуноферментный анализ
 - б) реакция обратной транскрипции
 - в) выделение плазмидной ДНК
 - г) ПЦР длинных фрагментов
- 7. Основным преимуществом метода секвенирования по Сэнгеру перед методами следующего поколения (NGS) является: (ИОПК-5.1)
 - а) высокая скорость анализа полных геномов
 - б) низкая стоимость одного запуска прибора
 - в) высочайшая точность чтения коротких участков ДНК
 - г) возможность одновременного анализа тысяч образцов
- 8. Применением секвенирования по Сэнгеру в биотехнологии НЕ является: (ИОПК-5.1)
 - а) подтверждение клонирования гена в плазмидный вектор
 - б) идентификация микроорганизмов по гену 16S рРНК
 - в) анализ единичных нуклеотидных полиморфизмов
 - г) полное секвенирование транскриптома клетки
- 9. Методом, используемым для количественного анализа концентрации белка в растворе, является: (ИОПК-5.2)
 - а) агарозный гель-электрофорез
 - б) спектрофотометрия при 260 нм
 - в) ПЦР в реальном времени
 - г) метод Брэдфорда
 - 10. Метод вестерн-блоттинга используется для: (ИОПК-5.1)
 - а) амплификации специфических участков ДНК
 - б) определения первичной последовательности белка
 - в) обнаружения специфических белков с помощью антител
 - г) разделения белков исключительно по их заряду

Ключи: 1 в), 2 в), 3 в), 4 б), 5 б), 6 б), 7 в), 8 г), 9 г), 10 в)

Теоретические вопросы:

1. Современные представления о биотехнологии как о науке, направленной на программируемое изменение признаков организмов (ИОПК-5.1).

Ответ должен содержать определение биотехнологии как программируемого процесса, раскрытие роли генетических факторов и факторов внешней среды, объяснение значения мутагенеза и искусственного отбора как ее основы.

2. Сравнительная характеристика методов выделения ДНК и РНК (ИОПК-5.2).

Ответ должен содержать сравнение целей, исходного материала и ключевых этапов методов, а также объяснение особых мер предосторожности, необходимых при работе с РНК.

3. Методы анализа количества и качества нуклеиновых кислот: спектрофотометрия, флуорометрия и гель-электрофорез (ИОПК-5.2).

Ответ должен содержать принцип каждого метода, сравнительный анализ их преимуществ и недостатков, а также информацию о том, какой параметр (количество или качество) оценивается каждым методом.

4. Принцип полимеразной цепной реакции (ПЦР) (ИОПК-5.2).

Ответ должен содержать описание принципа амплификации, перечень основных компонентов реакции и объяснение их функций, а также описание трех этапов цикла ПЦР и их температурных режимов.

5. Этапы подбора олигонуклеотидных праймеров для ПЦР *in silico* (ИПК-2.1).

Ответ должен содержать последовательность действий исследователя при подборе праймеров, перечень критически важных параметров праймеров и объяснение цели использования алгоритма BLAST.

6. Принцип количественной ПЦР в реальном времени (qPCR) (ИОПК-5.1).

Ответ должен содержать объяснение принципа детекции накопления продукта в реальном времени, определение порогового цикла (Ct) и объяснение его связи с исходным количеством матрицы.

7. Принцип метода секвенирования ДНК по Сэнгеру (ИОПК-5.1, ИОПК-5.2).

Ответ должен содержать описание принципа метода обрыва цепи, перечень его основных преимуществ и недостатков, а также области применения в биотехнологии.

8. Применение секвенирования ДНК для решения практических задач в биотехнологии (ИОПК-5.1).

Ответ должен содержать три конкретных примера применения метода (напр., в диагностике, селекции, контроле качества) с кратким пояснением.

9. Методы качественного и количественного анализа белков (ИОПК-5.2).

Ответ должен содержать сравнение принципов и целей методов SDS-PAGE и количественных колориметрических методов (напр., Брэдфорда), объяснение их основного назначения.

10. Принцип метода вестерн-блоттинга (ИОПК-5.1).

Ответ должен содержать описание принципа метода, основанного на иммунологическом детектировании, перечень ключевых этапов анализа и объяснение основы его высокой специфичности.

Информация о разработчиках

Слепцов Алексей Анатольевич, кандидат медицинских наук, кафедра физиологии растений, биотехнологии и биоинформатики Биологического института Национального исследовательского Томского государственного университета, доцент.