Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Оценочные материалы по дисциплине

Основы геномики

по направлению подготовки

06.03.01 Биология

Направленность (профиль) подготовки: **Биология**

Форма обучения Очная

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.В. Ярцев

Председатель УМК А.Л. Борисенко

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-3 Способен применять знание основ эволюционной теории, использовать современные представления о структурно-функциональной организации генетической программы живых объектов и методы молекулярной биологии, генетики и биологии развития для исследования механизмов онтогенеза и филогенеза в профессиональной деятельности.

ПК-1 Способен участвовать в исследовании биологических систем и их компонентов, планировать этапы научного исследования, проводить исследования по разработанным программам и методикам, оптимизировать методики под конкретные задачи.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-3.1 Демонстрирует понимание основ эволюционной теории, современные представления о структурно-функциональной организации генетической программы живых объектов при осуществлении профессиональной деятельности

ИОПК-3.2 Применяет методы молекулярной биологии, генетики и биологии развития для исследования механизмов онтогенеза и филогенеза в профессиональной деятельности

ИПК-1.1 Применяет полевые и лабораторные методы исследования биологических объектов с использованием современной аппаратуры и оборудования в соответствии с поставленными задачами

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- аналитическое сообщение в форме доклада с презентацией;
- развернутый доклад с презентацией по определенной тематике реферата

Аналитическое сообщение представляется в форме доклада с презентацией. Темы для подготовки аналитических сообщений (с докладом и презентацией):

ИОПК-3.1

- 1. Механизмы геномных перестроек, увеличения и уменьшения размеров геномов.
- 2. Семейства гомологичных генов. Ортологи и паралоги. Псевдогены.
- 3. Повторяющиеся последовательности в геномах про- и эукариот.
- 4. Мобильные генетические элементы. Общая характеристика и роль в геномной изменчивости.
- 5. Молекулярные механизмы транспозиции: консервативная и репликативная транспозиция, транспозиция двух классов ретротранспозонов.
- 6. Транспозоны бактерий (Tn1, Tn5, Mu), дрожжей (Ту), дрозофилы (Р и соріа), кукурузы (элементы Ac и Dc), человека (LINE и SINE).
- 7. Организация хромосом различных организмов. Структура центромерных и теломерных областей. Закономерности распределения генов по хромосомам.
- 8. Размеры генома про- и эукариот. Концепция минимального генома. Корреляция размеров генома, числа генов, белков и белковых доменов со сложностью его морфофизиологической организации.
- 9. Организация геномов Saccharomyces cerevisiae и Schizosaccharomyces pombe, сходство и отличия от геномов прокариот.
- 10. Разнообразие и основные свойства генома хлоропластов.

- 11. Разнообразие и основные свойства генома митохондрий.
- 12. Протеом органелл.
- 13. Свидетельства эндосимбиотического происхождения органелл на основе анализа геномов митохондрий и риккетсий, хлоропластов и цианобактерий. Вторичный эндосимбиоз. Характерные особенности нуклеоморфа Guillardia theta.

ИОПК-3.2

- 14. Основные методики физического, генетического и цитологического картирования.
- 15. Сложности расшифровки генома высших эукариот и пути их преодоления. Вычислительные и экспериментальные подходы к идентификации генов в геномных последовательностях и определению их функций.
- 16. Молекулярные базы данных: GeneBank, EMBL Data Library, SwissProt, PIR, Protein Data Bank и др. Специализация, структура и методы поиска в них информации.
- 17. Принцип действия и характеристики основных компьютерных программ для сравнения нуклеотидных и белковых последовательностей с базами данных (пакеты BLAST и FASTA).

ИПК-1.1

- 18. Современные подходы к секвенированию ДНК, их достоинства и недостатки. Метод Сэнгера. Автоматическое секвенирование. Пиросеквенирование. Стратегии определения полных нуклеотидных последовательностей геномов "клон за клоном" и "шотган всего генома".
- 19. Функциональная геномика и протеомика. Применение ДНК-микрочипов в геномных исследованиях.
- 20. Конструирование репрезентативных геномных библиотек. Современные подходы к картированию геномов.

Критерии оценивания: доклады студентов оцениваются по 3-х балльной шкале, где 3 балла — развернутый доклад, проиллюстрированный схемами, рисунками, фотографиями, сделанный на основе самостоятельно подобранных информационных источников; 2 балла — доклад, сделанный на основе предложенных информационных источников; 1 балл — краткая информационная справка.

Представляется развернутый доклад с презентацией по определенной тематике реферата.

Темы для написания рефератов (с докладом и презентацией):

ИОПК-3.1

- 1. Становление и развитие науки о геномах.
- 2. Геномика: цели, задачи, основные направления и методология.
- 3. Геномные проекты.
- 4. Использование достижений геномики в сельском хозяйстве.
- 5. Геномика и медицина.
- 6. Искусственные хромосомы.
- 7. Достижения генной инженерии и биотехнологии.
- 8. Международный проект "Геном человека".
- 9. Трансгенные растения.
- 10. Трансгенные животные.
- 11. Клонирование животных.
- 12. Особенности структурно-функциональной организации геномов растений.
- 13. Особенности структурно-функциональной организации геномов животных.
- 14. Особенности структурно-функциональной организации геномов прокариот.
- 15. Геном митохондрий.

- 16. Геном хлоропластов.
- 17. Генотерапия медицина 21 века.
- 18. Сателлитная ДНК.
- 19. Протеом и его динамичность.
- 20. Этногеномика.
- 21. Геномы патогенов.
- 22. Геномные исследования и экология.
- 23. Метагеномные проекты.
- 24. Фармакогеномика.
- 25. Геномный полиморфизм.
- 26. Роль мобильных элементов в эволюции геномов.
- 27. Перспективы функциональной геномики.
- 28. Молекулярная медицина.
- 29. Геномика и ее роль в лечении инфекционных заболеваний.

ИОПК-3.2

- 30. Анализ ДНК in silico.
- 31. Методы исследования протеома и транскриптома.
- 32. Генодиагностика.
- 33. Электронные базы данных генов и белков.
- 34. Конструирование геномов.

ИПК-1.1

- 35. Революция в генетическом картировании.
- 36. Современные методы секвенирования ДНК.
- 37. Геномные библиотеки.
- 38. Будущее биочипов.

Критерии оценивания: доклады студентов оцениваются по 3-х балльной шкале, где 3 балла — развернутый доклад, проиллюстрированный схемами, рисунками, фотографиями, сделанный на основе самостоятельно подобранных информационных источников; 2 балла — доклад, сделанный на основе предложенных информационных источников; 1 балл — краткая информационная справка.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Промежуточная аттестация проводится в форме устного зачета по билетам в седьмом семестре. Каждый экзаменационный билет содержит 2 теоретических вопроса.

Критерии оценивания:

Оценка	Критерии оценки
Не зачтено	Нет ответа даже на общие вопросы
Зачтено	Неполный ответ на все вопросы, полный развернутый или частично неполный ответ на все вопросы

Результаты текущего контроля учитываются при проведении промежуточной аттестации. Если студент посещал все лекции и семинарские занятия и подготовил не менее 2 развернутых докладов по темам курса (получил 6 баллов), то он получает зачет. В противном случае студент сдает устный зачет по билетам.

Типовые задания для проведения промежуточной аттестации по дисциплине (вопросы к зачету):

ИОПК-3.1

- 1. Явление горизонтального переноса генов и пластичность прокариотических геномов.
- 2. Сравнение организации геномов энтеробактерий (Escherichia coli, Salmonella enterica, Yersinia pestis).
- 3. Эволюция высоковирулентных штаммов патогенов. Разнообразие геномов прокариот.
- 4. Характерные особенности геномов, обеспечивающие адаптацию к специфическим экологическим нишам (на примере Deinococcus, Neisseria, Aquifex, Thermotoga).
- 5. Редуктивная эволюция геномов патогенов (Mycobacterium, Rickettsia, Mycoplasma).
- 6. Особенности геномов облигатных паразитов и эндосимбионтов.
- 7. Организация геномов архей.
- 8. Особенности организации генома Saccharomyces cerevisiae.
- 9. Особенности геномов многоклеточных организмов.
- 10. Особенности организации генома Caenorhabditis elegans.
- 11. Особенности организации генома Drosophila melanogaster.
- 12. Особенности организации генома Anopheles gambiae.
- 13. Особенности организации генома Ciona intestinalis.
- 14. Особенности организации генома Fugu rubripes.
- 15. Особенности организации генома Mus musculus.
- 16. Сравнение организации геномов Homo sapiens и Pan troglodites.
- 17. Особенности организации генома Arabidopsis thaliana.
- 18. Особенности организации генома Oryza sativa.
- 19. Особенности организации генома Populus trichocarpa.
- 20. Основные отличия геномов растений от геномов животных и их причины.
- 21. Семейства гомологичных генов. Ортологи и паралоги. Псевдогены.
- 22. Повторяющиеся последовательности в геномах про- и эукариот.
- 23. Мобильные генетические элементы. Общая характеристика и роль в геномной изменчивости.
- 24. Разнообразие и основные свойства генома хлоропластов.
- 25. Разнообразие и основные свойства генома митохондрий.

ИОПК-3.2

- 26. Геномная революция 1990-х. Вклад К. Вентера в развитие геномных исследований.
- 27. Основные принципы геномики.
- 28. Базовые разделы геномики конца 20 века и начала 21 века: структурный, сравнительный и функциональный.
- 29. Основные задачи «анатомии» генома. Доступность для исследований всех генов как первое достижение структурной геномики.
- 30. «Геномизация» жизни человека.
- 31. Принципы и перспективы развития сравнительной геномики.
- 32. Новые направления геномики и причины их формирования.

ИПК-1.1

- 33. Функциональная геномика и протеомика. Применение ДНК-микрочипов в геномных исследованиях.
- 34. Конструирование репрезентативных геномных библиотек. Современные подходы к картированию геномов.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

ИОПК-3.1

1. ВОЗНИКНОВЕНИЕ ГЕНОМИКИ КАК НАУЧНОЙ ДИСЦИПЛИНЫ СТАЛО ВОЗМОЖНЫМ ПОСЛЕ: а) установления структуры ДНК б) создания концепции гена в) дифференциации регуляторных и структурных участков гена г) полного секвенирования генома у ряда организмов.

ИОПК-3.1

2. ГЕНЫ HOUSE KEEPING У ПАТОГЕННОГО МИКРООРГАНИЗМА ЭКСПРЕССИРУЮТСЯ: а) в инфицированном организме хозяина б) всегда в) только на искусственных питательных средах г) под влиянием индукторов.

ИОПК-3.1

3. ЦЕЛЬ СЕКВЕНИРОВАНИЯ ГЕНОМА – УСТАНОВЛЕНИЕ: а) размеров генома б) последовательности нуклеотидов в) содержания А-Т г) соотношения А-Т/ГЦ пар нуклеотидов.

ИОПК-3.1

4. НАПРАВЛЕНИЕ ГЕНОМИКИ, НЕПОСРЕДСТВЕННО СВЯЗАННОЕ С ПРОТЕОМИКОЙ: а) структурная б) сравнительная в) функциональная г) формальная.

ИОПК-3.1

5. ПЛАЗМИДА — ЭТО ...: а) определенный штамм кишечной палочки, используемый для биотехнологических целей б) кольцеобразная молекула ДНК - внехромосомный элемент генетической информации в) участок цепи РНК, несущий информацию о структуре гена г) вирус, размножающийся в цитоплазме микробной клетки д) хромосома, используемая в качестве вектора для введения ДНК в клетки бактерий.

ИОПК-3.2

6. МЕТОД ВВЕДЕНИЯ ЧУЖЕРОДНОЙ ДНК В КЛЕТКИ С ПОМОЩЬЮ ВЫСОКОВОЛЬТНОГО РАЗРЯДА НАЗЫВАЕТСЯ: а) электрофорезом б) пульс-форезом в) электропорацией г) электрошоком.

Ключи: 1г), 2б), 3б), 4в), 5б), 6в)

ИОПК-3.2

7. Вопрос: при проведении real-time ПЦР накопление флуоресцентного сигнала...

Ответ: прямо пропорционально накоплению фрагментов ДНК.

ИОПК-3.2

8. Вопрос: известные полиморфные варианты и мутации можно детектировать с помощью...

Ответ: рестрикционный анализ, аллельспецифичная ПЦР, мультиплексная ПЦР, ПЦР в реальном времени.

ИОПК-3.2

9. Вопрос: поиск гомологичных последовательностей осуществляет программа...

Ответ: BLAST.

ИОПК-3.1

10. Вопрос: однонуклеотидная замена, в результате которой измененный кодон начинает кодировать другую аминокислоту, называется...

Ответ: миссенс-мутация.

ИОПК-3.2

11. Вопрос: преимущества пиросеквенирования...

Ответ: быстрая детекция однонуклеотидных полиморфизмов.

ИПК-1.1

12. Вопрос: полиморфизмы, не выраженные фенотипически, в лабораторной практике используют для...

Ответ: идентификации личности.

ИОПК-3.2, ИПК-1.1

13. Задача: ген состоит из 3 одинаковых смысловых (экзоны) и 4 одинаковых несмысловых (интроны) участков, причем интроны состоят из 120 нуклеотидов каждый, а весь ген имеет 1470 нуклеотидов. Сколько кодонов будет иметь про-мРНК, каждый экзон, мРНК и белок, закодированный в этом гене?

Ответ: про-мРНК содержит 490 кодонов, мРНК -330 кодонов, экзон -110 кодонов, белок -330 аминокислот.

ИОПК-3.2, ИПК-1.1

14. Задача: известно, что определенный ген эукариотической клетки содержит 4 интрона (два по 24 нуклеотида и два по 36 нуклеотидов) и 3 экзона (два по 120 нуклеотидов и один 96 нуклеотидов). Определите: количество нуклеотидов в мРНК; количество кодонов в мРНК; количество аминокислот в полипептидной цепи; количество тРНК, участвующих в трансляции.

Ответ: количество нуклеотидов в мРНК соответствует количеству нуклеотидов в экзонах = 336. Количество кодонов мРНК = 336/3=112 Количество аминокислот = 111 количество тРНК, участвующих в трансляции = 112.

ИОПК-3.2, ИПК-1.1

15. Задача: как изменится соотношение нуклеотидов в ДНК, копией которой является следующая мРНК – УУГГАЦЦГГУУА, если произошли следующие изменения: после 1-го триплета был вставлен тимин, после второго и третьего добавлен аденин.

Ответ: соотношение нуклеотидов в исходной ДНК и мутированной изменилось с 1 до 1,99.

Информация о разработчиках

Усов Константин Евгеньевич, кандидат биологических наук, кафедра генетики и клеточной биологии БИ ТГУ, доцент.