Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С. Н. Филимонов

Рабочая программа дисциплины

Введение в физику плазмы

по направлению подготовки

03.03.02 Физика

Направленность (профиль) подготовки: «Фундаментальная физика»

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК 2 Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные.
- ПК 1 Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 2.2 Анализирует и интерпретирует экспериментальные и теоретические данные, полученные в ходе научного исследования, обобщает полученные результаты, формулирует научно обоснованные выводы по результатам исследования.
- ИПК 1.1 Собирает и анализирует научно-техническую информацию по теме исследования, обобщает научные данные в соответствии с задачами исследования.

2. Задачи освоения дисциплины

- Освоить понятийный и математический аппарат, используемый для описания лвижения плазмы
- Научиться применять понятийный аппарат для решения практических задач профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 5, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Общая физика, Электродинамика, Обыкновенные дифференциальные уравнения.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- лекции: 16 ч.;
- семинарские занятия: 32 ч.

в том числе практическая подготовка: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Понятие плазмы.

Коллективное взаимодействие. Дебаевское экранирование. Плазменная частота. Плазменный параметр. Определение плазмы. Классификация видов плазмы. Методы получения и поддержания плазменного состояния. Идеальная плазма. Вырожденная плазма. Равновесная и неравновесная плазма. Плазма в природе и технике.

Тема 2. Постоянные однородные поля.

Математика векторного поля. Система уравнений Максвелла. Векторный анализ. Магнитное поле. Ларморовы радиус и частота. Скрещенные поля. Гравитационный дрейф.

Тема 3. Нестационарные однородные поля.

Поляризационный дрейф. Постоянство орбитального магнитного момента в медленно меняющемся магнитном поле. Поперечный дрейф при медленном нарастании электрического поля.

Тема 4. Неоднородное магнитное поле.

Градиентный дрейф. Центробежный дрейф. Пробкотрон. Тороид. Адиабатические инварианты. Движение частиц в магнитном поле Земли. Магнитная изоляция.

Тема 5. Ускорители заряженных частиц.

Методы ускорения заряженных частиц. Электростатические ускорителя. Индукционные ускорители. Циклотронные ускорители.

Тема 6. Движение заряженных частиц в газе.

Диффузия и дрейф заряженных частиц при наличии столкновений. Сечение столкновений и длина свободного пробега заряженных частиц.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине осуществляется путем контроля посещаемости, проведения контрольных работ, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в пятом семестре проводится в устной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=2425
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (https://www.tsu.ru/sveden/education/eduop/).

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Ю. П. Райзер. / Физика газового разряда // Долгопрудный: Издательский дом Интеллект, 2009.
 - И. А. Котельников. / Лекции по физике плазмы // Москва: Бином, 2014.
 - б) дополнительная литература:
 - Д. А. Франк-Каменецкий. Лекции по физике плазмы. Любое издание.
- В. Е. Голант, А. П. Жилинский, И. Е. Сахаров. Основы физики плазмы. М.: Атомиздат, 1977.
- Л. А. Арцимович, Р. З. Сагдеев. Физика плазмы для физиков. М.: Атомиздат, 1979.
 - Ф. Чен. Введение в физику плазмы. М.: Мир, 1987.
 - Б. М. Смирнов. Физика слабоионизованного газа. М.: Наука, 1978.
 - М. Митчнер, Ч. Кругер. Частично ионизованные газы. М.: Мир, 1976.
- А. Б. Михайловский. Теория плазменных неустойчивостей. Т. 1,2. М.: Атомиздат, 1977.
- В. Л. Грановский. Электрический ток в газе (установившийся ток). М.: Наука, 1971.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Семенюк Наталья Степановна, физический факультет НИ ТГУ, доцент