Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Геолого-географический факультет

УТВЕРЖДЕНО: Декан ГГФ П.А. Тишин

Рабочая программа дисциплины

Дистанционное зондирование

по направлению подготовки / специальности

05.03.06 Экология и природопользование

Направленность (профиль) подготовки / специализация: «Природопользование»

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП Р.В. Кнауб

Председатель УМК М.А. Каширо

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-3 Способность применять базовые методы экологических исследований для решения задач профессиональной деятельности.
- ИОПК-3.1 Способность обосновывать выбор методов экологических исследований в профессиональной деятельности.
- ИОПК-3.2 Способность применять базовые методы экологических исследований для решения профессиональных задач в области охраны окружающей среды и природопользования.
- ПК-3 Способность реферировать научные труды, составлять аналитические обзоры накопленных отечественной и мировой наукой знаний в области экологии и природопользования.
- ИПК-3.1 Способность принимать участие в проведении научных исследований в области экологии и природопользования под руководством квалифицированных научных сотрудников.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-3.1 Умеет обосновывать выбор методов экологических исследований в профессиональной деятельности.
- ИОПК-3.2— Умеет применять базовые дистанционные методы экологических исследований для решения профессиональных задач в области охраны окружающей среды и природопользования.
- ИПК-3.1 Владеет методами обработки данных дистанционного зондирования Земли для участия в проведении научных исследований в области экологии и природопользования под руководством квалифицированных научных сотрудников.

2. Задачи освоения дисциплины

- Освоить аппарат выбора методов экологических исследований в профессиональной деятельности.
- Научиться применять базовые дистанционные методы экологических исследований для решения профессиональных задач в области охраны окружающей среды и природопользования.
- Овладеть методами обработки данных дистанционного зондирования Земли для участия в проведении научных исследований в области экологии и природопользования под руководством квалифицированных научных сотрудников.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений.

4. Семестр(ы)освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 7, зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: ГИС в экологии и природопользовании, топография с основами геоде-

зии геохимия окружающей среды, метеорология и климатология методы контроля и оценки антропогенного воздействия на водные ресурсы, методы контроля и антропогенного воздействия на атмосферу.

Некоторые аспекты дисциплины будут полезны при освоении курса «Промышленная экология»

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3з.е., 108 часа, из которых:

- лекции: 12 ч.:
- практические занятия: 26 ч.;
- -в том числе практическая подготовка: 26 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Определение и задачи дистанционного зондирования Земли. История развития дистанционных методов исследования.

Рассматриваются определение, цели и задачи дистанционного зондирования Земли. Рассматриваются дистанционные методы исследования природных объектов и история их развития.

Тема 2. Структура аэрокосмической системы дистанционного зондирования Земли. Съемочное оборудование и его носители. Орбиты космических аппаратов дистанционного зондирования Земли. Обзор современных орбитальных группировок космических аппаратов и устройств для аэрофотосьемки. Разрешения космических снимков.

Рассматриваются строение и характеристики оптико-электронного и радиолокационного комплексов, установленных на спутниках. Рассматриваются параметры орбит космических аппаратов. Классификация орбит по наклонению и высотам. Приводится обзор современных орбитальных группировок космических аппаратов и устройств для аэрофотосьемки, включая беспилотные летательные аппараты.

Тема 3. Физические основы дистанционных методов в оптическом и инфракрасном диапазоне. Электромагнитное излучение и электромагнитный спектр. Взаимодействие электромагнитного излучения с атмосферой. Взаимодействие излучения с поверхностью Земли. Спектральная отражательная способность объектов в оптическом и ближнем инфракрасном диапазоне.

Рассматриваются характеристики электромагнитного излучения и диапазоны электромагнитного спектра. Рассматриваются механизмы поглощения и рассеивания электромагнитного излучения газами в атмосфере. Рассматриваются отражательные свойства Земной поверхности и кривые спектральной отражательной способности различных объектов в оптическом и ближнем инфракрасном диапазоне.

Тема 4. Общие понятия, принципы и физические основы радиолокации. Строение радиолокационных устройств и систем. Снимки в радиодиапазоне.

Рассматриваются общие понятия, принципы и физические основы радиолокации. Приводятся методы реализации радиолокационных устройств и систем. Особенности получения снимков в радиодиапазоне.

Тема 5. Обработка космических снимков.

Приводится обзор программных средств для обработки данных дистанционного зондирования. Рассматривается цифровая обработка снимков алгоритмами контролируемой и неконтролируемой классификации в задачах составления карт растительного покрова. Рассматривается расчет вегетационных и водных индексов. Рассматривается расчет температуры поверхности Земли по космическим снимкам.

Тема 6. Применение космических снимков.

Рассматривается обновление карт по космическим снимкам, составление и обновление тематических карт. Дается обзор применения дистанционных данных в: сельском хозяйстве, в лесном хозяйстве, мониторинге лесных и торфяных пожаров, мониторинге ледовой обстановки, распределении снежного покрова и его динамики на равнинных территориях, наблюдении за паводками, мониторинге морских акваторий, мониторинге экологических катастроф и опасных природных явлений; мониторинге в нефтегазовой отрасли.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине осуществляется путем контроля посещаемости, проведения контрольных работ, и фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачёт в четвертом семестре проводится в письменной форме по 2 вопросам и 1 вопрос — выполнение задания на практике по билетам. Билет содержит 2 теоретических вопроса и один практический. Подготовка ответов на вопросы первых 5 студентов осуществляется в течении 40 минут с начала зачёта, остальные отвечают по мере готовности. Продолжительность зачёта 4 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=23139
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине. https://moodle.tsu.ru/course/view.php?id=23139
 - в) План семинарских / практических занятий по дисциплине.

Практическая работа №1. Практическая работа по цифровой обработке космических снимков алгоритмами контролируемой и неконтролируемой классификации для выявления типов растительного покрова и пройденных пожарами площадей на территории участка в Томской области.

Практическая работа №2. Практическая работа по цифровой обработке космических снимков алгоритмами контролируемой и неконтролируемой классификации с целью выявления классов наземного покрова и нефтезагрязненных земель на территории участка в XMAO.

Практическая работа №3. Практическая работа по расчету вегетационного индекса (NDVI - Normalized difference vegetation index) на фолновых участках южной и средней тайги и его динамики на пожарах и нефтезагрязненных землях.

Практическая работа №4. Практическая работа по расчетам водного индекса (MNDWI - Модифицированный нормализованный разностный водный индекс) и индекса мутности (NDTI - The Normalized Difference Thermal Index).

Практическая работа № 5. Практическая работа по построению карт температуры поверхности Земли на территорию Мамонтовского месторождения по космическим снимкам и идентификации по ним факельных установок с использованием сервера https://earthexplorer.usgs.gov/

- г) Методические указания по проведению лабораторных работ.
- д) Методические указания по организации самостоятельной работы студентов.
- для овладения знаниями: необходимо чтение текста (учебника, первоисточника, дополнительной литературы), составление плана текста, графическое изображение структуры текста, конспектирование текста, выписки из текста, работа со словарями и справочниками, ознакомление с нормативными документами, использование аудио- и видеозаписей, компьютерной техники и информационно-телекоммуникационной сети Интернет и др.
- для закрепления и систематизации знаний: необходима работа с конспектом лекции, обработка текста (учебника, первоисточника, дополнительной литературы, аудио и видеозаписей), повторная работа над учебным материалом, составление плана, составление таблиц для систематизации учебного материала, ответ на контрольные вопросы, заполнение рабочей тетради, аналитическая обработка текста (аннотирование, рецензирование, реферирование, конспект-анализ и др.), завершение аудиторных практических работ и оформление заданий по ним, материалов-презентаций, составление библиографии, тематических кроссвордов, тестирование и др.
- для формирования умений: необходимо решение задач и упражнений по образцу, решение вариативных задач, выполнение схем, выполнение расчетов, решение ситуационных (профессиональных) задач, подготовка к деловым играм, проектирование и моделирование разных видов и компонентов профессиональной деятельности, рефлексивный анализ профессиональных умений с использованием аудио- и видеотехники и др.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Барталев С.А., Егоров В.А., Жарко В.О., Лупян Е.А., Плотников Д.Е., Хвостиков С.А., Шабанов Н.В. Спутниковое картографирование растительного покрова России. М.: ИКИ РАН, 2016. 208 с.
- 2. Сутырина Е. Н. Дистанционное зондирование земли : учеб. пособие. Иркутск : Изд-во ИГУ, 2013. 165 с.
- 3. Верба В.С., Неронский Л.Б., Осипов И.Г., Турук В.Э. Радиолокационные системы землеобзора космического базирования. М.: Радиотехника, 2010. 682 с.
- 4. Бакулев П.А. Радиолокационные системы. Учебник для вузов. М.: Радиотехника. 2004, 320 с.
- 5. Опытно-технологический малый космический аппарат «АИСТ-2Д». Самара: Издво СамНЦ РАН, 2017. 324 с
- 6. Фомин А.Н., Тяпкин В.Н., Дмитриев Д.Д. Теоретические и физические основы радиолокации и специального мониторинга. Красноярск: Сиб.федер.ун-т,2016. 292 с.

- 7. Коберниченко, В. Г. Радиоэлектронные системы дистанционного зондирова-ния Земли: [учеб. пособие] Екатеринбург: Изд-во Урал. ун-та, 2016. 220 с.
- 8. Шовенгердт Р.А. Дистанционное зондирование. Модели и методы обработки изображений. Москва: Техносфера, 2010. 560 с.
- 9. Изображения Земли из космоса: примеры и применения: Научно-популярное издание.- М.: Сканэкс. 2005. 100 с.
- 10. Иалинников В.А., Стеценко А.Ф., Алтынов А.Е., Попов С.М. Мониторинг природной среды аэрокосмическими средствами. Учебное. Пособие для студентов вузов.- М.: Изд. МИИГАиК, 2008. 173 с.

б) дополнительная литература:

- 1. Мониторинг природной среды аэрокосмическими средствами. Учебное пособие для студентов вузов. М.: Изд. МИИГАиК. 2008 г. 145 с.
- 2. Малышева Н.В. Пособие по дешифрированию древесной растительности на сверхдетальных изображениях. Москва 2014.
- 3. Терентьева И.Е., Филлипов И.В., Сабреков А.Ф., Глаголев М.В., Курбатова Ю.А., Максютов Ш. Картографирование таежных болот Западной Сибири на основе дистанционной информации // Известия РАН. Серия Географическая. 2020. Т.84. №6. С.920-930.
- 4. Алексеева М.Н., Русских И.В., Ященко И.Г., Кадычагов П.Б. Наземнодистанционные исследования постпирогенных ландшафтов Томской области // Оптика атмосферы и океана. 2022 №7. С.539-548.
- 5. Алексеева М.Н., Федоров Д.В., Русских И.В., Ященко И.Г. Дистанционноназемный мониторинг нефтезагрязненных земель Нефтеюганского района XMAO // Оптика атмосферы и океана. 2023. № 6. С.513-520.
- 6. Лошкарёва А. Р. Методические особенности крупномасштабного картографирования растительного покрова лесотундры// Арктика и Север. 2013. № 10. С. 1-35.
- 7. Чупаченко О.Н. Учебно-методическое пособие по проведению общественного мониторинга загрязнений рек при добыче россыпного золота с использованием космоснимков. Практическая часть Москва: Всемирный фонд дикой природы (WWF), 2020 г. 72 с.
- 8. Хабарова И. А., Хабаров Д. А., Яворская И. Д., Иванов И. Н. Обзор современных достижений в фотограмметрии и аэрофотосъемке // Международный журнал прикладных наук и технологий «Integral» №4(2) 2019. С.15-33.
- 9. Морозова В.А. Расчет индексов для выявления и анализа характеристик водных объектов с помощью данных дистанционного зондирования // Современные проблемы территориального развития. 2019. № 2. С. 1-12.
- 10. Использование космических снимков для определения границ водоёмов и изучения процессов эвтрофикации // Теоретическая и прикладная экология. 2019. № 3. С.28-33
- 11. Марьинских Д.М. Ландшафтно-экологический анализ территории Уренгойского нефтегазоконденсатного месторождения // https://www.researchgate.net/publication/315496915_LANDSAFTNO-EKOLOGICESKIJ_ANALIZ_TERRITORII_URENGOJSKOGO_NEFTEGAZOKOND ENSATNOGO MESTOROZDENIA.

12. Применение беспилотных летательных аппаратов для ведения землеустройства, кадастра и градостроительства // Экономика и экология территориальных образований. 2019. Т.3, № 1. С. 98-108.

в) ресурсы сети Интернет:

- 1. Кантемиров Ю.И. (ООО «компания Совзонд»). Обзор современных радиолокационных данных дзз и методик их обработки, реализованных в программном комплексе Sarscape // https://sovzond.ru/files/obzor radarnykh dannykh i sarscape.pdf
- 2. Обработка многозональных космоснимков в multispec https://gis-lab.info/qa/multispec-sat.html
- 3. Спутники ДЗЗ // https://innoter.com
- 4. Данные дистанционного зондирования Земли https://ladsweb.modaps.eosdis.nasa.gov/
- 5. Данные дистанционного зондирования Земли https://earthexplorer.usgs.gov/
- 6. Изместьев Анатолий Григорьевич. Дистанционные методы зондирования Земли: уч. Пособие https://portal.kuzstu.ru/file/view/49485.pdf
- 7. История возникновения и развития аэрокосмических методов // https://sovzond.ru/upload/iblock/a5d/3 2014 67-79.pdf
- 8. Опыт обработки радиолокационных данных в интересах Географического картографирования https://www.researchgate.net/publication/313788207_EXPERIENCE_OF_RADAR_DA TA PROCESSING FOR GEOGRAPHIC MAPPING
- 9. Беспилотный летательный аппарат: применение в целях аэрофотосъемки для картографирования https://racurs.ru/upload/iblock/092/UAV_1.pdf
- 10. Опыт использования беспилотных летательных аппаратов в биогеографических исследованиях на территории заповедника «Белогорье» http://intercarto.msu.ru/jour/articles/article46.pdf
- 11. Обзор современных радиолокационных данных дзз и методик их обработки, реализованных в программном комплексе sarscape https://sovzond.ru/files/obzor_radarnykh_dannykh_i_sarscape.pdf
- 12. Руководство по приборам и методам наблюдений // http://mgmtmo.ru/edumat/wmo/8 IV.pdf

13. Перечень информационных ресурсов

- а) лицензионное и свободно распространяемое программное обеспечение:
- ArcGIS комплекс геоинформационных программных продуктов американской компании ESRI.
- MultiSpec Программа анализа многозональных снимков https://engineering.purdue.edu/~biehl/MultiSpec/download win.html

Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);

- публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
- б) информационные справочные системы:

- Электронный каталог Научной библиотеки ТГУ— http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
 Электронная библиотека (репозиторий) ТГУ—
- http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - __ JBC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и практического типа (ГИС-класс) индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Алексеева Мария Николаевна, к.г.н., доцент кафедра природопользования ГГФ.