МИНОБРНАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

УТВЕРЖДАЮ

Руководитель ОПОП

Гензе Л.В.≤

 $202/\Gamma$.

Алгебра

Рабочая программа дисциплины

Закреплена за кафедрой Учебный план

Кафедра алгебры

Математика – 01.03.01

Математика и компьютерные науки – 02.03.01

Механика и математическое моделирование – 01.03.03

Программы «Основы научно-исследовательской деятельности в области математики», «Основы научно-исследовательской деятельности в области механики и математического моделирования», «Основы научно-исследовательской деятельности в области

математики и компьютерных наук»

Форма обучения Общая трудоёмкость

Очная 10 з.е.

Часов по учебному плану

360 часов

в том числе:

аудиторная контактная работа

172 часа

самостоятельная работа

174.8 часа

Вид(ы) контроля в семестрах

экзамен

1-й семестр

экзамен

2-й семестр

Программу составил: профессор кафедры алгебры, д.ф.-м.н., Тимошенко Е.А.

Рецензент профессор кафедры алгебры, д.ф.-м.н., Крылов П.А.

Рабочая программа дисциплины «Алгебра» разработана в соответствии с СУОС НИ ТГУ:

Самостоятельно устанавливаемый образовательный стандарт НИ ТГУ по направлениям подготовки 01.03.01 – Математика, 01.03.03 – Механика и математическое моделирование, 02.03.01 – Математика и компьютерные науки (Утвержден Ученым советом НИ ТГУ, протокол от $27.03.2019 \, \text{N}\text{2}03$)

Рабочая программа одобрена на заседании УМК ММФ

Протокол от 30.01. 2020 № 1

Цель освоения дисциплины/модуля

Фундаментальная подготовка и формирование прочных теоретических знаний и практических навыков для возможности дальнейшего развития алгебры и её использования в прикладных задачах.

1. Место дисциплины/модуля в структуре ОПОП

Дисциплина относится к обязательной части Общепрофессионального цикла Блока 1 «Дисциплины/модули».

Пререквизиты дисциплины: основные знания из программы общего среднего образования по предметам «Математика», «Алгебра», «Начала анализа», «Геометрия».

Постреквизиты дисциплины: «Дискретная математика», «Теория алгоритмов», «Компьютерная алгебра».

2. Компетенции и результаты обучения, формируемые в результате освоения дисциплины

Таблица 1

		Таблица 1
Компетенция	Индикатор компетенции	Код и наименование результатов обучения (планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций)
ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	ИОПК 1.1 Демонстрирует навыки работы с профессиональной литературой по основным естественнонаучным и математическим дисциплинам. ИОПК 1.2 Демонстрирует навыки выполнения стандартных действий, решения типовых задач с учетом основных понятий и общих закономерностей, формулируемых в рамках базовых математических и естественнонаучных дисциплин. ИОПК 1.3 Владеет фундаментальными знаниями, полученными в области математических и (или) естественных наук.	ОР-1.1 Владеть навыками работы с профессиональной литературой по алгебре для успешной учебной деятельности. ОР-2.1 Уметь выбирать оптимальную методику и подбирать алгебраический аппарат для решения задач профессиональной деятельности. ОР-2.2 Уметь излагать содержание математической теории с необходимым уровнем строгости и доступности, основываясь на теоретических принципах и методах алгебры. ОР-3.1 Владеть основными понятиями и результатами алгебры, а также некоторыми стандартными методами доказательства теорем алгебры.

3. Структура и содержание дисциплины/модуля

3.1. Структура и трудоёмкость видов учебной работы по дисциплине

Общая трудоёмкость дисциплины составляет 10 зачётных единиц, 360 часов.

Таблица 2

Вид учебной работы	Трудоёмкость в академических			
	часах			
Общая трудоёмкость	Всего			
Контактная работа:	185.2			
Лекции (Л):	86			
Практические занятия (ПЗ)	86			
Групповые консультации	8.6			
Промежуточная аттестация	4.6			
Самостоятельная работа обучающегося:	174.8			
- изучение учебного материала, публикаций по теме дисциплины	30			
- подготовка к текущему контролю	25			
- выполнение индивидуальных заданий	30			
- подготовка к практическим занятиям	22.4			
- подготовка к экзамену	67.4			
Вид промежуточной аттестации	Экзамен			

Таблица 3

Код занятия	Наименование разделов и тем и их содержание	Вид учебной работы, занятий, контроля	Всего (час.) 360 часов: 86 часов лекции, 86 часов практики, 174.8 часа СРС, 13.2 часа консультации	Коды результатов обучения
	Семестр 1			
1.1.	Тема 1. Множества и операции над ними. Целые числа. Наибольший общий делитель. Основная теорема арифметики. Перестановки, их четность, транспозиции. Подстановки и их умножение. Матрицы и подматрицы. Действия над матрицами и их свойства. Определители и их свойства. Миноры и алгебраические дополнения. Теорема Лапласа и следствия из нее. Невырожденные матрицы и обратная матрица. Базис и ранг системы векторов. Ранг матрицы и его вычисление.	Лекции+практики +СРС	22+22+12	OP-1.1, OP-2.1, OP-3.1
1.2.	Тема 2. Теорема Крамера, формулы Крамера. Теорема Кронекера – Капелли о совместности системы. Общее решение системы линейных уравнений, алгоритм его нахождения. Метод последовательного исключения неизвестных (метод Гаусса). Системы линейных однородных уравнений. Теорема о существовании фундаментальной системы решений. Алгоритм построения фундаментальной системы решений.	Лекции+практики +СРС	8+8+4.6	OP-1.1, OP-2.1, OP-3.1
1.3.	Тема 3. Бинарные алгебраические операции и их свойства. Нейтральный и симметричный элементы, их единственность. Группы и подгруппы. Числовые группы. Симметрическая и знакопеременная группы, группы диэдра. Полная линейная группа и ее подгруппы. Кольца и подкольца. Делители нуля и обратимые элементы. Числовые кольца, кольца матриц, кольца вычетов. Поля и подполя. Простые поля. Полная линейная группа и кольцо матриц над полем. Изоморфизмы групп и колец.	Лекции+практики +СРС	18+18+10	OP-1.1, OP-2.1, OP-3.1
1.4.	Тема 4. Расширение поля. Построение поля комплексных чисел. Операции над комплексными числами в алгебраической форме. Умножение и деление комплексных чисел в тригонометрической форме. Формула Муавра.	Лекции+практики +СРС	6+6+4	OP-1.1, OP-2.1, OP-3.1

	Извлечение корня из комплексного числа. Комплексные корни из единицы.			
	Первообразные корни как образующие группы корней из единицы.			
	Присоединение элемента к полю. Теорема о единственности поля			
	комплексных чисел.			
	Промежуточная аттестация	Экзамен		OP-1.1,
				OP-2.2,
				OP-3.1
	Семестр 2			
2.1.	Тема 1. Кольцо многочленов над полем. Алгоритм Евклида. Неприводимые	Лекции+практики	4+4+10	OP-1.1,
	многочлены. Основная теорема о разложении многочлена на множители.	+CPC		OP-3.1
2.2.	Тема 2. Корни многочленов. Теорема Безу и ее следствия. Кратные корни	Лекции+практики	4+4+10	OP-1.1,
	многочлена. Теорема о понижении кратности корня при переходе к	+CPC		OP-2.1,
	производной, следствие из этой теоремы. Основная теорема алгебры			OP-3.1
	многочленов (теорема Гаусса) и ее следствия.			
2.3.	Тема 3. Линейные пространства. Базисы и размерность пространства. Теорема	Лекции+практики	4+4+10	OP-1.1,
	об изоморфизме линейных пространств.	+CPC		OP-3.1
2.4.	Тема 4. Критерий подпространства. Построение подпространств с помощью	Лекции+практики	5+4+11	OP-1.1,
	линейных оболочек. Связи между двумя базисами и между координатами	+CPC		OP-2.1,
	одного вектора в этих базисах.			OP-3.1
2.5.	Тема 5. Операторы линейных пространств. Образ и ядро оператора. Ранг и	Лекции+практики	4+4+10	OP-1.1,
	дефект. Критерии обратимости оператора.	+CPC		OP-3.1
2.6.	Тема 6. Понятие алгебры над полем. Изоморфизм алгебр.	Лекции+практики	5+6+12	OP-1.1,
		+CPC		OP-3.1
2.7.	Тема 7. Собственные векторы и собственные значения оператора.	Лекции+практики	6+6+13.8	OP-1.1,
	Собственные подпространства. Спектр оператора и его инвариантность.	+CPC		OP-2.1,
	Алгоритм нахождения собственных значений и собственных векторов			OP-3.1
	оператора.			
	Промежуточная аттестация	Экзамен		OP-1.1,
				OP-2.2,
				OP-3.1

4. Образовательные технологии, учебно-методическое и информационное обеспечение для освоения дисциплины

В ходе реализации дисциплины используются классические образовательные технологии — лекционные занятия, самостоятельное изучение материалов студентами, выполнение индивидуальных заданий и экзамен.

Самостоятельная работа включает в себя: теоретическое освоение лекционного курса, выполнение индивидуальных заданий, подготовку к экзамену. Для выполнения самостоятельной работы обеспечивается доступ к информационным ресурсам курса (материалы лекций и список литературы, включающий книги по изучаемым в курсе вопросам).

Вопросы экзамена позволяют оценить уровень сформированности компетенций в рамках разделов дисциплины. Текущая аттестация будет проводиться при помощи индивидуальных заданий (контрольных работ). Подробнее система оценивания представлена в ФОС дисциплины.

4.1. Литература и учебно-методическое обеспечение

а) Перечень основной учебной литературы

- 1. Винберг Э.Б. Курс алгебры. М.: Факториал Пресс, 2001. 544 с.
- 2. Кострикин А.И. Введение в алгебру. Ч. 1. М.: МЦНМО, 2020. 272 с.
- 3. Кострикин А.И. Введение в алгебру. Ч. 2. М.: МЦНМО, 2018. 368 с.
- 4. Кочетков Е.С. Линейная алгебра. М.: Форум, 2017. 416 c.
- 5. Куликов Л.Я. Алгебра и теория чисел. М.: Высшая школа, 1979. 559 с.
- 6. Проскуряков И.В. Сборник задач по линейной алгебре. М.: БИНОМ, 2005. 383 с.
- 7. Фаддеев Д.К., Соминский И.С. Сборник задач по высшей алгебре. М.: Наука, 1977. 288 с.

б) Перечень дополнительной учебной литературы

- 1. Босс В. Лекции по математике: Линейная алгебра. М.: Ленанд, 2019. 224 с.
- 2. Ильин В.А., Позняк Э.Г. Линейная алгебра. М.: Физматлит, 2014. 280 с.
- 3. Куликов Л.Я., Москаленко А.И., Фомин А.А. Сборник задач по алгебре и теории чисел. М.: Просвещение, 1993. 288 с.

4.2. Базы данных и информационно-справочные системы, в том числе зарубежные

Электронный университет – Moodle. URL: https://moodle.tsu.ru Электронная библиотечная система НИ ТГУ. URL: http://www.lib.tsu.ru Платформа «Открытое образование». URL: https://openedu.ru/course/

4.3. Перечень лицензионного и программного обеспечения

Операционные системы: Microsoft Windows 7, Microsoft Windows 10.

4.4. Оборудование и технические средства обучения

Для проведения занятий используются классические аудитории с доской и, возможно, проектором и компьютером.

5. Методические указания обучающимся по освоению дисциплины

Для успешного освоения материала студентам необходимо пользоваться источниками, представленными в списке литературы. Самостоятельная работа студентов состоит в проработке лекционного материала и материала практических занятий, самостоятельного изучения дополнительных вопросов, более глубокого анализа лекций с помощью дополнительной литературы. Кроме того, студентам нужно выполнить индивидуальных задания. Студенты должны внимательно относиться к подготовке к текущему контролю и к экзамену, ответственно относиться к самостоятельной работе.

6. Преподавательский состав, реализующий дисциплину Профессор кафедры алгебры, д.ф.-м.н. Тимошенко Е.А.

7. Язык преподавания Русский