МИНОБРНАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Институт прикладной математики и компьютерных наук

УТВЕРЖДАЮ

Директор института прикладной

математики и компьютерных наук

А.В. Замятин

2021 г.

Интеллектуальные системы

рабочая программа дисциплины

Закреплена за кафедрой

Учебный план

Теоретических основ информатики

02.03.02 Фундаментальная информатика

u

информационные технологии

Направленность (профиль) «Искусственный интеллект

и разработка программных продуктов»

Форма обучения

Общая трудоёмкость

очная

4 3.e.

Часов по учебному плану

144

в том числе:

аудиторная контактная работа

50.65

самостоятельная работа

93.35

Вид контроля в семестрах

Зачет с оценкой

4 семестр – зачет с оценкой

Программу составил: д-р техн. наук, профессор, профессор кафедры теоретических основ информатики

В.Г. Спицын

Рецензент:

д-р техн. наук, профессор, профессор кафедры теоретических основ информатики

А.В. Замятин

Рабочая программа дисциплины «Интеллектуальные системы» разработана в соответствии с образовательным стандартом высшего образования — бакалавриат, самостоятельно устанавливаемым федеральным государственным автономным образовательным учреждением высшего образования «Национальный исследовательский Томский государственный университет» по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии (Утвержден Ученым советом НИ ТГУ, протокол от 27.10.2021 г. № 08).

Рабочая программа одобрена на заседании кафедры теоретических основ информатики

Протокол от 04 июня 2021 г. № 05

Заведующий кафедрой, д-р техн. наук, профессор

А.В. Замятин

Рабочая программа одобрена на заседании учебно-методической комиссии института прикладной математики и компьютерных наук (УМК ИПМКН)

Протокол от 17 июня 2021 г. № 05

Председатель УМК ИПМКН, д-р техн. наук, профессор

С.П. Сущенко

Цель освоения дисциплины

Цель — обучить студентов осуществлять программную реализацию интеллектуальных систем обработки информации

1. Место дисциплины в структуре ОПОП

Дисциплина «Интеллектуальные системы» относится к обязательной части, формируемой участниками образовательных отношений Блока 1 «Дисциплины», входит в модуль «Искусственный интеллект».

Пререквизиты дисциплины: «Основы программирования», «Алгоритмы и структуры данных»

Постреквизиты дисциплины: нет.

2. Компетенции и результаты обучения, формируемые в результате освоения дисциплины

Таблица 1.

Компетенция	Индикатор универсальной компетенции	Код и наименование результатов обучения (планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций)				
ОПК-2. Способен применять компьютерные/супер компьютерные методы, современное программное обеспечение, в том числе отечественного происхождения, для решения задач профессиональной деятельности	ИОПК-2.2. Использует методы высокопроизводительных вычислительных технологий, современного программного обеспечения, в том числе отечественного происхождения	OP-1.1.1. Знает основные методы высокопроизводительных вычислительных технологий, современного программного обеспечения, в том числе отечественного происхождения;				
ПК-1. Способен осуществлять программирование, тестирование и опытную эксплуатацию ИС с использованием технологических и функциональных стандартов, современных	ИПК-1.1. Определяет, согласовывает и утверждает требования заказчика к ИС ИПК-1.2. Проектирует программное обеспечение	ОР-1.1.1. Умеет подбирать и анализировать информацию относительно выбранной темы исследования; ОР-1.1.2. Умеет выбирать наиболее подходящий математический метод или комбинацию методов для решения конкретной прикладной задачи; ОР-1.2.1. Владеет базовыми знаниями по применению методов искусственного интеллекта для обработки информации;				

моделей и методов оценки качества и надежности программных средств	ИПК-1.3. Кодирует на языках программирования и проводит модульное тестирование ИС	ОР-1.3.1. Умеет разрабатывать генетические алгоритмы для решения задач оптимизации. ОР-1.3.2. Умеет выбирать топологию нейронной сети для решения задачи обработки информации. ОР-1.3.3. Умеет выбирать топологию нейронной сети для решения задачи распознавания объектов на изображениях. ОР-1.3.4. Обучающийся сможет: - разработать и оформить программный код в соответствии с установленными требованиями; - сформировать обучающий набор данных для машинного обучения нейросетевой модели; - разработать тестовый набор данных для проверки работы созданного программного приложения; - провести компьютерные эксперименты по обучению и тестированию разработанной нейросетевой модели; - адаптировать нейросетевую модель к практическому применению на основе проведенных компьютерных экспериментов;
--	---	--

3. Структура и содержание дисциплины

3.1. Структура и трудоемкость видов учебной работы по дисциплине

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

Таблица 2.

Вид учебной работы	Трудоемкость в академических часах			
Общая трудоемкость	144	144		
Контактная работа:	50.65	50.65		
Лекции (Л):	16	16		
Лабораторные работы (ЛР)	32	32		
Групповые консультации	2.4	2.4		
Промежуточная аттестация	0.25	0.25		
Самостоятельная работа обучающегося:	93.35	93.35		
- подготовка к лабораторным	20	20		
занятиям/практическим занятиям/коллоквиумам				
- подготовка к рубежному контролю по	53.35	53.35		
теме/разделу				
- изучение учебного материала, публикаций	20	20		
Вид промежуточной аттестации	Зачет с оценкой	Зачет с оценкой		

3.2. Содержание и трудоемкость разделов дисциплины

Таблица 3.

							Таблица 3.
Код занятия	Наименование разделов и тем и их содержание	Вид учебной работы, занятий, контроля	Семе	Часы в электро нной форме	Всего (час.)	Литература	Код (ы) результата(ов) обучения
	Раздел 1. Модели представления знаний.		4		22	№ 1, № 2, №3	OP-1.1.1, OP-1.1.2, OP-2.1.1
1.1.	Методы приобретения знаний.	Лекции	4		1		
1.2.	Логическая модель представления знаний.	Лекции	4		1		
1.3.	Продукционная модель представления знаний.	Лекции	4		1		
1.4.	Представление знаний в виде семантической сети.	Лекции	4		1		
1.5.	Изучение учебного материала.	CPC	4		10		
1.6.	Разработка экспертной системы на основе продукционных правил.	Лабораторные работы	4		8		
	Раздел 2. Архитектура экспертных систем. Применение нечеткой логики в экспертных системах.		4		22	№ 1, № 2, №3, №4	OP-1.1.1, OP-1.1.2, OP-1.2.1
2.1.	Архитектура и технология разработки экспертных систем.	Лекции	4		1		
2.2.	Нечеткая логика и ее применение в экспертных системах.	Лекции	4		1		
2.3.	Операции над нечеткими множествами и меры нечеткости множеств.	Лекции	4		1		
2.4.	Нечеткие правила вывода в экспертных системах.	Лекции	4		1		
2.5.	Подготовка к лабораторным занятиям.	CPC	4		10		
2.6.	Разработка экспертной системы на основе применения нечетких правил вывода.	Лабораторные работы	4		8		
	Раздел 3. Генетический алгоритм.		4		21	№ 1, № 5	OP-1.2.1, OP-1.3.1, OP-1.3.2
3.1.	Этапы работы генетического алгоритма.	Лекции	4		1		
3.2.	Операторы генетического алгоритма.	Лекции	4		1		
3.3.	Настройка параметров генетического алгоритма.	Лекции	4		1		
3.4.	Изучение учебного материала.	CPC	4		10		
3.5.	Применение генетического алгоритма для решения задач оптимизации и аппроксимации.	Лабораторные работы	4		8		
	Раздел 4. Искусственные нейронные сети.		4		23	№ 4, №6, №7, №8, №9	OP-1.2.1, OP-1.3.1, OP-1.3.2, OP-1.3.3 OP-1.3.4.
4.1.	Биологические и искусственные нейронные сети.	Лекции	4		2		

4.2.	Алгоритмы обучения искусственных нейронных сетей.	Лекции	4	2	
4.3.	3. Сверточная нейронная сеть.		4	1	
4.4.	4. Подготовка к лабораторным занятиям.		4	10	
4.5.	Применение искусственных нейронных сетей для обработки	Лабораторные	4	8	
	информации.				
	Подготовка к рубежному контролю.		4	53.35	
	Консультации в период теоретического обучения		4	2.4	
	Прохождение промежуточной аттестации в форме зачета с оценкой		4	0.25	

4. Образовательные технологии, учебно-методическое и информационное обеспечение для освоения дисциплины

Основой обучения является курс лекций, читаемый преподавателем, а также выполняемые студентом лабораторные работы.

Самостоятельная работа студентов, изучение учебного материала, подготовка к лабораторным работам и экзамену.

Промежуточная аттестация осуществляется на основе собеседования при условии успешного выполнения ранее лабораторных работ.

Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций, и методические материалы, определяющие процедуры оценивания результатов обучения, приведены в Приложении 1 к рабочей программе «Фонд оценочных средств».

4.1. Рекомендуемая литература и учебно-методическое обеспечение

№ п/п	Авторы / составители	Заглавие	Заглавие Издательство	
1.	Спицын В.Г., Цой Ю.Р.	Интеллектуальные системы: Учебное пособие.	Томск: Изд-во ТПУ, 2012. – 176 с.	2012
2.	Джонотано Д., Райли Г.	Экспертные системы: принципы разработки и программирование.	2007	
3.	Рассел С., Норвиг П.	Искусственный интеллект: современный подход (AIMA-2)	Москва [и др.]: Издательский. дом «Вильямс», 2015. – 1408 с.	2015
4.	Осовский С.	Нейронные сети для обработки информации – 2-е изд., перераб. и доп.	Москва: Изд-во Горячая линия- Телеком, 2017.— 448 с.	2017
5.	Гладков Л.А., Курейчик В.В., Курейчик В.М.	Генетические алгоритмы — 2-е издание.	Москва: «Физматлит», 2010. — 368 с.	2010
6.	Хайкин С.	Нейронные сети: полный курс: пер. с англ.— 2-е изд., испр.	Москва [и др.]: Издательский. дом «Вильямс», 2019. — 1104 с.	2019
7.	Галушкин А.И.	Нейронные сети: основы теории. Москва: Изд-во Горячая линия- Телеком, 2017. — с.		2017
8.	Шолле Ф.	Глубокое обучение на Python.	Санкт-Петербург: Питер, 2018. – 400 с.	2018
9.	Джонс М. Т.	Программирование искусственного интеллекта в приложениях.	Москва: ДМК Пресс, 2011. – 312 с.	2011

4.2. Базы данных и информационно-справочные системы, в том числе зарубежные

- 1. Российская ассоциация искусственного интеллекта [Электронный ресурс], 2019 URL: http://raai.org/
- 2. Российская ассоциация нейроинформатики. [Электронный ресурс], 2019 URL: https://www.niisi.ru/iont/ni/

- 3. http://ransmv.narod.ru/ Российская ассоциация нечетких систем и мягких вычислений.
- 4. http://www.makhfi.com/KCM intro.htm Введение в моделирование знаний.
- 5. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019 URL: .http://cvpr2019.thecvf.com/

4.3. Перечень лицензионного и программного обеспечения

Для проведения лабораторных работ требуется среда разработки программного обеспечения Microsoft Visual Studio.

4.4. Оборудование и технические средства обучения

Аудитории для проведения интерактивных лекций: видеопроектор, экран настенный. Для проведения лабораторных занятий — компьютерные классы.

5. Методические указания обучающимся по освоению дисциплины

Основой обучения является курс лекций, читаемый преподавателем. Важным аспектом овладения перечисленными компетенциями является выполнение лабораторных работ. Для самостоятельной работы и дополнительного расширения круга знаний желательно использовать литературу, приведенную в разделе 4.1, а также информационные системы, приведенные в разделе 4.2.

6. Преподавательский состав, реализующий дисциплину

Спицын Владимир Григорьевич, д-р техн. наук, профессор кафедры теоретических основ информатики

7. Язык преподавания – русский язык.