• Министерство науки и высшего образования Российской Федерации

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ: Декан физического факультета С.Н. Филимонов «15» апреля 2021 г.

Рабочая программа дисциплины

Компьютерная графика и анимация

по направлению подготовки

03.03.02 - физика

Направленность (профиль) подготовки: «Фундаментальная физика»

Форма обучения Очная

Квалификация **Бакалавр**

Год приема **2021**

Код дисциплины в учебном плане: Б1.В.ДВ.01.04.10

СОГЛАСОВАНО:

Руководитель ОП

Уши О.Н. Чайковская

Председатель УМК

О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- -ОПК-3 способен использовать современные информационные технологии и программные средства при решении задач профессиональной деятельности, соблюдая требования информационной безопасности;
- -ПК-2 Способен осуществлять педагогическую деятельность в рамках программ среднего общего и среднего профессионального образования, программ дополнительного образования.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 3.2 применяет общее и специализированное программное обеспечение для теоретических расчетов и обработки экспериментальных данных;
- ИПК 2.1 знает содержание учебных дисциплин, соответствующих профилю подготовки, а также необходимых материалов по организации учебного процесса с применением технологий электронного обучения;
- ИПК 2.2 способен применять современные образовательные технологии, включая информационные, а также разрабатывать цифровые образовательные ресурсы.

2. Задачи освоения дисциплины

- Освоить математический аппарат, на основе которого ЭВМ строит изображения.
- Научиться применять математический аппарат для построения изображений машинной графики
 - Освоить графические редакторы 2D, 3D изображений

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 7, зачет.

Семестр 8, зачет с оценкой.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются знание дисциплин модуля «Информационные технологии», владение офисными технологиями на уровне квалифицированного пользователя.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 6 з.е., 216 часов, из которых:

- лекции: 32 ч.;
- практические занятия: 80 ч.;

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Введение в компьютерную графику.

Задачи компьютерной графики. Психофизиология зрительного восприятия. Психофизиология цвета.

Тема 2. Информационные модели цвета.

Растровая, векторная и фрактальная графика. Информационные модели цвета: RGB, CMY, HSB, L*a*b. Цветовой охват.

Тема 3. Математика в компьютерной графике.

Вектор. Операции с вектором. Матричная алгебра. Поверхности Безье. В-сплайны. Кривые Кунса.

Тема 4. Полигональная сетка.

Элементы моделирования полигональной сетки. Полигоны. 1D-полигональная сетка. 2D-полигональная сетка.

Тема 5. Преобразование 2D-объектов.

Преобразования точек и линий. Матричные преобразования: масштабирование, отображение, сдвиг, поворот. Проблема единого подхода к описанию преобразований. Двумерное вращение вокруг произвольной оси.

Тема 6. Преобразование 3D-объектов.

Обобщение на случай трех измерений. Трехмерные преобразования и проекции. Классификация проекций. Параллельные проекции. Центральные проекции. Математическое описание проекций. Специальные виды проекций.

Тема 7. Интерфейс Blender.

Особенности интерфейса. Основной принцип организации рабочего пространства.

Тема 8. Управление сценой в Blender.

Особенности управления сценой в программе. Камера. Источник света. Рендер и сохранение.

Тема 9. Базовые трансформации.

Изменение характеристик объекта: размер, положение, ориентация. Объектный режим и режим редактирования.

Тема 10. **Меsh-объекты.**

Разбор mesh-объектов – графических примитивов, на которых строится дальнейшее моделирование.

Тема 11. Модификаторы.

Рассмотрим модификаторы Subdivide, Boolean, Mirror, Smooth более подробно.

Тема 12. Материалы и текстуры.

С помощью материалов и текстур можно сделать смоделированный объект более похожим на реальный. Отражение, поглощение и пропускание света в Blender. Изображения на поверхности. Рельефы.

9. Текущий контроль по дисциплине

Текущий контроль проводится путем проверки результатов выполнения студентами практических заданий, предполагающих самостоятельную работу по поиску, анализу, обработке информации, создания вспомогательных материалов для дальнейшего практического использования и реализуется в виде обсуждения с аудиторией, фронтального опроса.

Текущий контроль возможен и путем организации индивидуальной контрольной работы, предусматривающей проверку знаний студента по всем разделам или по отдельным

темам дисциплины. Контрольная работа может включать как вопросы, требующие развернутого ответа, так и тестовые задания.

10. Порядок проведения и критерии оценивания промежуточной аттестации Семестр 7.

Прохождение итогового контроля обеспечивается выполнением всех заданий и, при необходимости, контрольной работы.

Темы практических занятий

- 1. Преобразование изображения.
- 2. Формат ВМР. Масштабирование.
- 3. Формат ВМР.Повороты и отражения.
- 4. Формат ВМР. Преобразование цвета.
- 5. Формат GIF. Анализ структуры файла.
- 6. Преобразования GIF- анимации
- 7. Перемещение, вращение и масштабирование плоских фигур
- 8. Отрисовка эллипса
- 9. Закрашивание плоской фигуры
- 10. Трехмерные преобразования.

Для получения зачета необходимо выполнение не менее 80% предлагаемых заданий.

Семестр 8

Зачет с оценкой ставится при выполнении заданий и, при необходимости, контрольной работы:

Выполнено более 80% заданий – отлично.

Выполнено более 70% заданий – хорошо.

Выполнено более 60% заданий – удовлетворительно...

Темы практических занятий

- 1. Интерактивная свечка в Blender.
- 2. Тропическая сцена в Blender.
- 3. Лесной зверек в Blender.
- 4. Кристалл в Blender.
- 5. Сцена побережья в Blender.
- 6. Модель механизма в Blender.
- 7. Домик шамана в Blender.
- 8. Создание блендера в Blender
- 9. Космический корабль в Blender

11. Учебно-методическое обеспечение

При осуществлении образовательного процесса используются технологии дистанционного обучения. Материалы курса размещены в СДО MOODLE и доступны зарегистрированным на курс пользователям по адресу http://moodle.tsu.ru/course/view.php?id=903 (Часть 1) и http://moodle.tsu.ru/course/view.php?id=1175 (Часть 2)

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Миронов Д.Ф. Компьютерная графика в дизайне БХВ-Петербург, 2008—560 с.
- 2. Петров М.Н. Компьютерная графика (3-е изд.) Питер. 2011. 544 с.
- 3. Роджерс Д., Адамс Дж. Математические основы машинной графики. М.: Машиностроение, 2001. 240 с.

- 4. Marschner S., Shirley P. Fundamentals of computer graphics. CRC Press. 2016. 737 pp.
 - б) дополнительная литература:
- 1. Hughes J. Computer graphics principles and practice. Adisson-Wesley. 2014. 1262 pp.
 - в) ресурсы сети Интернет:
- 1. http://www.intuit.ru/studies/courses/70/70/info Алгоритмические основы современной компьютерной графики
- 2. https://younglinux.info/blender/course введение в Blender. Курс для начинающих
- 3. https://blender3d.com.ua/ уроки Blender

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- При осуществлении образовательного процесса используются технологии дистанционного обучения. Материалы курса размещены в СДО MOODLE и доступны зарегистрированным на курс пользователям по адресу http://moodle.tsu.ru/course/view.php?id=903 (Часть 1) и http://moodle.tsu.ru/course/view.php?id=1175 (Часть 2)

14. Материально-техническое обеспечение

В силу специфики дисциплины лекционные занятия проходят в компьютерном классе, оснащенном мультимедийным презентационным оборудованием и имеющем выход в Интернет. Рабочие места преподавателя и студентов оснащены компьютерами, объединенными в локальную сеть и имеющими выход в Интернет. Выход в Интернет необходим для проведения ряда практических занятий и работы с СДО МООDLE. Локальная сеть используется для передачи данных между участниками учебного процесса, способствуя активизации учебной деятельности. На всех рабочих местах установлено лицензионное программное обеспечение.

15. Информация о разработчиках

Зайцев Василий Андреевич, ассистент кафедры общей и экспериментальной физики физического факультета НИ ТГУ.