Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (БИОЛОГИЧЕСКИЙ ИНСТИТУТ)

УТВЕРЖДАЮ:

Директор Биологического института

Д.С. Воробьев

3. 29 »

20_23_г.

Рабочая программа дисциплины

Молекулярная биология клетки

по направлению подготовки

06.03.01 Биология

Направленность (профиль) подготовки: **«Биология»**

Форма обучения Очная

Квалификация **Бакалавр**

Год приёма **2023**

Код дисциплины в учебном плане: Б1.В.ДВ.08.02.02

PVKOBOMATEUR OH

Д.С. Воробьев

Председатель УМК

А.Л. Борисенко

Томск - 2023

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 Способен применять принципы структурно-функциональной организации, использовать физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания.
- ПК-2 Способен изучать научно-техническую информацию по направлению исследований и представлять результаты своих исследований в научном сообществе.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-2.1 Демонстрирует понимание принципов структурно-функциональной организации живых систем.
- ИПК-2.1 Владеет навыком поиска и анализа научной информации по направлению исследований.

2. Задачи освоения дисциплины

- Получить теоретические знания об ультраструктуре клеточных органелл и молекулярных механизмах внутриклеточных процессов, обеспечивающих жизнедеятельность и размножение клеток.
- Научиться анализировать и применять современную информацию о клетках для теоретического и практического применения.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы самостоятельно формируемой участниками программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 5, экзамен.

5. Входные требования для освоения дисциплины

Данная дисциплина является необходимой на первом этапе специализации студентов в области генетики и клеточной биологии, так как знакомит студентов с основными направлениями в развитии изучения клетки и внутриклеточных структур на современном этапе, полученных с помощью методов изучения ультраструктуры клетки и методов молекулярной биологии.

Для успешного освоения дисциплины студент должен иметь базовые знания по математическим и естественнонаучным дисциплинам, дисциплинам профессионального цикла (ботанике, зоологии, биохимии, цитологии и гистологии, методам клеточной биологии). В результате освоения дисциплины, студент в дальнейшем может применить полученную информацию на практике для освоения дисциплин специализации, в ходе выполнения Большого практикума, научно-исследовательских практик, а также написания бакалаврской выпускной работы.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з. е., 108 часов, из которых:

- лекции: 16 ч.;
- семинарские занятия: 26 ч.

- практические занятия: 0 ч.;
- лабораторные работы: 0 ч.
 - в том числе практическая подготовка: 0 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Темы лекционных занятий:

Тема 1. Клеточная поверхность.

Что мы уже знаем о клеточной поверхности? Основные компоненты клеточной мембраны. Строение клеточной мембраны. Функции мембранных белков, липидов и углеводов (повторение материала курса «Цитология и гистология»). Наружный слой поверхности животной клетки — гликокаликс. Строение и свойства гликокаликса. Трехмерная ультраструктура капиллярного эндотелиального гликокаликса. Средний слой — плазматическая мембрана. Новая модель мембраны эритроцитов — полумозаичная модель. Новая модель клеточных мембран млекопитающих — белковый слой-липидбелковый остров (PLLPI).

Тема 2. Эндоплазматический ретикулум. Доменная организация и взаимодействие с другими органеллами.

Что мы уже знаем об эндоплазматическом ретикулуме? Строение и функции (повторение материала курса «Цитология и гистология»). Функционально и структурно различные домены мембраны ЭР. Стабилизация доменов ЭР мембранными белками. Стабилизация мембран ядерной оболочки (линкерные комплексы нуклеоскелета и цитоскелета (LINC), рецептор ламина В (LBR), ядерный поровый комплекс. Стабилизация цистерн ЭР (полирибосомы, Climp63, Семейство интегральных мембранных белков Reticulon (Rtn) и REEPs/DP1/Yop1p). Мембрана ЭР образует контакты с плазматической мембраной и другими органеллами (ЭР и плазматическая мембрана, ЭР и митохондрии, ЭР и аппарат Гольджи, ЭР и эндосомы, ЭР и пероксисомы).

Тема 3. Митохондрии.

Что мы уже знаем о митохондриях? Строение и функции (повторение материала курса «Цитология и гистология»). Липидный состав митохондриальных мембран. Белки митохондрий. Комплекс транслокона внешней мембраны: главные ворота для белков, пересекающих внешнюю мембрану. Пути импорта митохондриальных белков. Контакт митохондрий с лизосомной мембраной. Изменение митохондрий при дифференцировке. Митофагия (селективное разрушение митохондрий путём аутофагии). Кинетопласт (ДНКсодержащее образование внутри митохондрии у простейших класса Kinetoplastea, Euglenida и Diplonemea). Аналог митохондрий у некоторых одноклеточных анаэробных организмов (гидрогеносомы, митосомы).

Тема 4. Лизосомы. Топология мембраны лизосомы.

Что мы уже знаем о лизосомах? Строение и функции (повторение материала курса «Цитология и гистология»). Липиды мембраны лизосомы. Белки мембраны лизосомы. Топология мембраны лизосомы (LAMP1. LAMP2, H +ATФазная помпа, TRPML, TPC, NPC1, SLC38A9, Rabs и субъединицы SNARE, VAMP7, синаптотагмин VII).

Тема 5. Функциональная архитектура клеточного ядра.

Что мы уже знаем о клеточном ядре? Строение и функции (повторение материала курса «Цитология и гистология»). Функциональная архитектура ядра клетки в развитии, старении и заболеваниях. Ультраструктура клеточного ядра. Поверхность ядерных структур. Ультраструктура и ядерная архитектура теломерного хроматина. Ультраструктура хромосом типа ламповых щеток и ядерных телец в ооцитах птиц и амфибий. Пространственная локализация В-хромосом в интерфазном ядре.

Тема 6. Специализированные цитоскелетные структуры.

Что мы уже знаем о цитоскелете? Строение и функции (повторение материала курса «Цитология и гистология»). Кольцевые каналы, спектросома, фусома в оогенезе двукрылых насекомых. Цитоскелетные структуры, обеспечивающие движение клетки – жгутики и реснички. Реснички (первичные сенсорные (неподвижные) реснички, зародышевая ресничка). Дефекты первичных ресничек «цилиопатии».

Тема 7. Основные механизмы мембранного транспорта.

Что мы уже знаем о внутриклеточном транспорте? (повторение материала курса «Цитология и гистология»). Транспорт ионов. Ионные каналы. Адресование белков. Транспортные сигналы (сигнальный пептид, сигнальный участок). Механизмы транспорта белков между компартментами клетки (транспорт через ядерные поры, транслокация через мембраны, везикулярный транспорт).

Тема 8. Деление клетки. Митоз.

Что мы уже знаем о митозе? Стадии митоза (повторение материала курса «Цитология и гистология»). Ультраструктура митотических хромосом. Роль белка Ki-67 в делении клетки. Механизмы кластеризации. Спорный феномен ультраструктуры митотической хромосомы — хромосомные полости. Архитектура и динамика микротрубочек в митотическом метафазном веретене клеток млекопитающих. Кинетохор и кинетохорные микротрубочки. Метод реконструкций митотических веретен.

Темы семинарских занятий:

Тема 1. Методы изучения ультраструктуры клетки, внутриклеточных процессов, межклеточной сигнализации (повторение материала курса «Методы клеточной биологии». Знакомство с новыми методами). **2 ч.**

Тема 2. Гипотезы происхождения эукариотической клетки. 2 ч.

Теория симбиогенеза К.С. Мережковского. Теория серийных эндосимбиозов Л. Маргулис. Инвагинационная гипотеза. Химерная гипотеза. Гипотеза вирусного происхождения ядра. Гипотеза расширения мембраны.

Тема 3. Внутриядерные компартменты. 2 ч.

Что мы знаем о внутриядерных компартментах? Строение и функции ядрышка (повторение материала курса «Цитология и гистология»). Тельца Кахаля. РМL-тельца. Спеклы, параспеклы. Инсуляторные тельца. Комплексы белков группы Polycomb с ДНК. Ядерная ламина.

Тема 4. Внутриклеточный транспорт. 4 ч.

Участие цитоскелета во внутриклеточном транспорте (повторение материала курса «Цитология и гистология»). Ретро-транслокация белков из эндоплазматической сети в цитозоль. Импорт белка в пероксисомы. Канонические моторные белки. Что такое миозин? Роль микротрубочек в транспорте секреторных белков. Основные механизмы распознавания и транспорта синаптических грузов. Как вирусы используют транспортные системы клетки для перемещения в цитоплазме.

Тема 5. Межклеточные взаимодействия. 4 ч.

Общие принципы межклеточной сигнализации. Рецепторы, сопряженные с белками. Примеры внутриклеточных сигнальных каскадов. Рецепторы с ферментативной активностью. Экзосомы.

Тема 6. Изменение ультраструктуры клетки при патологии. 4 ч.

Патология клетки: общие вопросы. Ультраструктурные изменения митохондрий при патологии. Изменения ультраструктуры и функции митохондрий при старении. Лизосомные болезни накопления.

Тема 7. Канцерогенез. Протоонкогены и супрессоры рака. 4 ч.

Молекулярные основы канцерогенеза. История развития мутационной теории онкогенеза. Протоонкогены и гены-супрессоры. Другие теории онкогенеза.

Тема 8. Клеточная гибель. 4 ч.

Методы изучения клеточной гибели (повторение материала курса «Методы клеточной биологии»). Современные представления о клеточной гибели. Апоптоз. Некроз.

9. Текущий контроль по дисциплине

Текущий контроль освоения учебного материала проводится в форме устных опросов, оценки подготовки, представления и защиты докладов по темам семинаров, а также оценки письменного систематического обзора по предложенным темам.

- Оценивание остаточных базовых знаний о строении клеточных органелл, внутриклеточных процессах и методах их изучения, которые обучающийся приобрёл при освоении дисциплин «Цитология и гистология» и «Методы клеточной биологии», проводится в форме устного опроса в начале лекций и семинаров. При ответе на 3 и более вопроса на протяжении одного занятия обучающийся получает 1 балл. Ответы на меньшее количество вопросов не оцениваются.
- Умение провести критический анализ литературных данных по конкретной биологической проблеме (проверяется ИПК-2.1), проверяются путём подготовки и последующего представления на семинарском занятии доклада, выполненного на основе критического анализа выбранного студентом вопроса семинара с использованием демонстрационной презентации. В течение курса обучающийся должен сделать минимум 2 доклада.

Критерии оценивания данного вида работы:

- полнота изложения материала,
- чёткая структурированность рассматриваемой проблемы,
- сопровождающая презентация гармонично дополняет и иллюстрирует доклад,
- способность грамотно и уверенно ответить на возникающие вопросы.
- Количество проанализированных источников информации не менее 5.

При выполнении всех критериев работа получает оценку 5 балла, при несоблюдении любого из критериев оценка снижается на один балл. Максимальная оценка – 5 баллов, минимальная – 0 баллов.

– При выполнении письменного систематического обзора обучающейся должен проанализировать результаты исследований, опубликованных в периодических изданиях, выделить наиболее цитируемые публикации, выявить актуальность исследований по предложенным темам, сделать полный отчет о всех (или за определенный период времени) имеющихся исследованиях по данной теме (проверяется ИПК-2.1). Систематический обзор выполняется в письменной форме и представляется в виде доклада на семинарском занятии.

Критерии оценивания данного вида работы:

- полнота изложения материала,
- чёткая структурированность рассматриваемой проблемы,
- сопровождающая презентация гармонично дополняет и иллюстрирует доклад,
- оформление обзора (соответствие требованиям).

При выполнении всех критериев работа получает оценку 4 балла, при несоблюдении любого из критериев оценка снижается на один балл. Максимальная оценка – 4 балла, минимальная – 0 баллов.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в пятом семестре проводится в устной форме по билетам. Экзаменационный билет состоит из двух вопросов, проверяющих ИОПК-2.1 Ответы на вопросы экзаменационного билета даются в развернутой форме.

Примерный перечень вопросов экзаменационных билетов:

- 1. Электронная микроскопия. Сущность метода. Разрешающая способность электронного микроскопа. Преимущества и недостатки электронной микроскопии.
 - 2. Просвечивающая электронная микроскопия. Общая схема строения микроскопа. Разрешающая способность просвечивающего микроскопа.
 - 3. Особенности пробоподготовки для просвечивающей электронной микроскопии.
 - 4. Визуализация объектов в ПЭМ. Контрастирование. Визуализация белков в ПЭМ.
- 5. Растровая (сканирующая) электронная микроскопия. Общая схема строения микроскопа. Разрешающая способность РЭМ.
 - 6. Гликокаликс и микроокружение клетки. Эндотелиальный гликокаликс (строение, функции).
- 7. Плазматическая мембрана. Модели строения мембраны (модель Даниэлли и Дэвсона, модель Сингера и Николсона, модель Энгельмана, полумозаичная модель, модель «белковый слой-липид-белковый остров» (PLLPI)).
- 8. Домены мембраны эндоплазматического ретикулума. Белки, стабилизирующие домены ЭПР (LINC, рецептор ламина B (LBR), Climp63, полирибосомы, Reticulon (Rtn)).
 - 9. Сайты контакта мембраны ЭР с ПМ и другими органеллами.
- 10. Наружная и внутренняя мембраны митохондрий. Липидный состав и белки митохондрий.
 - 11. Транслоказа внешней митохондриальной мембраны (ТОМ) и пути импорта митохондриальных белков.
 - 12. Изменение митохондрий при дифференцировке клеток.
- 13. Кинетопласт. Локализация в клетке. Ультраструктуры. Молекулярная организация.
 - 14. Гидрогеносомы. Гипотезы происхождения. Ультраструктура. Функции.
 - 15. Белки и липиды мембраны лизосомы. Гликокалекс лизосомы. LAMP белки.
 - 16. Ультраструктура клеточного ядра и ядрышка. Теломерный хроматин.
- 17. Внутриядерные домены (тельца Кахаля, PML тельца). Локализация в ядре, функции.
- 18. Внутриядерные домены (спеклы, параспеклы, комплексы белков группы Polycomb с ДНК). Локализация в ядре, функции.
 - 19. Общая схема транспорта белков между мембранными компартментами клетки.
 - 20. Транспортные сигналы (сигнальный пептид, сигнальный участок).
- 21. Импорт белков в ядро. Этапы импорта. Сигналы ядерной локализации. Кариоферины – импортины.
 - 22. Экспорт белков из ядра. Этапы экспорта. Экспортин.
 - 23. Экспорт РНК из ядра (мРНК, тРНК, рРНК).
 - 24. Импорт белка в пероксисомы.
 - 25. Транслокация через мембрану ЭПР (трансмембранный транспорт).
- 26. Везикулярный транспорт. Пути транспорта белков в клетке. Донорный и акцепторный

компартменты. Антероградный и ретроградный транспорт.

- 27. Механизм везикулярного транспорта. Rab-белки. SNARE-белки.
- 28. Моторные белки.
- 29. Кольцевые каналы.
- 30. Спектросома.
- 31. Фусома.
- 32. Первичные сенсорные (неподвижные) реснички. Строение. Происхождение. Функции.
 - 33. Первичная зародышевая ресничка.

- 34. Факторы, вызывающие повреждение клетки.
- 35. Нарушение энергообеспечения жизнедеятельности клетки.
- 36. Повреждение мембранной и ферментной системы клетки.
- 37. Нарушение ионного и водного баланса.
- 38. Нарушения наследственной программы клетки и/или механизмов ее реализации.
 - 39. Адаптивные механизмы клетки.
- 40. Дефекты ресничек (вторичных и первичных). Цилиопатии. Первичная цилиарная дискинезия.
 - 41. Ультраструктурные изменения митохондрий при патологии и при старении.
 - 42. Лизосомные болезни накопления.
 - 43. Современные данные по организации митотического веретена.
 - 44. Белок Кі-67 в клеточном цикле.
 - 45. Некроз.
 - 46. Апоптоз.

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценивание ответа на экзаменационный билет производится по 5-ти балльной шкале, где:

- 5 баллов (отлично) дан полный, самостоятельный (без наводящих вопросов) ответ, сопровождающийся соответствующими рисунками, схемами и примерами, на все (2) вопросы билета. Продемонстрировано знание и владение терминами по курсу «Молекулярная биология клетки». Даны ответы на дополнительные вопросы (если необходимость в таковых возникнет), демонстрирующие, что отвечающий ориентируется в смежных темах и имеет целостное представление об ультраструктуре клеточных органелл, их взаимодействии и основных внутриклеточных процессах.
- 4 балла (хорошо) дан ответ, сопровождающийся соответствующими рисунками, схемами и примерами, на все (2) вопросы билета. При этом отвечающий нуждается в наводящих вопросах. Продемонстрировано знание и владение терминами в рамках тем экзаменационных вопросов. Даны ответы на дополнительные вопросы (если необходимость в таковых возникнет), демонстрирующие, что отвечающий имеет целостное представление об ультраструктуре клеточных органелл, их взаимодействии и основных внутриклеточных процессах.
- 3 балла (удовлетворительно) дан ответ на все (2) вопросы билета не в полном объеме. Отвечающий испытывает трудности c использованием иллюстрированием Даны ответы ответа. на дополнительные вопросы необходимость в таковых возникнет), демонстрирующие, что отвечающий имеет фрагментарное представление о строении клеточных органелл, их взаимодействии и основных внутриклеточных процессах.
- 2 балла (неудовлетворительно) обучающийся не ответил на вопросы экзаменационного билета. Не имеет представления о строении клетки и её органелл.

Общая оценка для промежуточной аттестации по дисциплине «Молекулярная биология клетки» учитывает итоги текущего контроля и рассчитывается по формуле:

Общая оценка по дисциплине = оценка на экзамене (если оценка меньше 5 баллов) + 0,1 - 0.12 баллов (при наборе от 10 до 12 баллов за устный опрос) + 0.3 балла (при получении за два доклада на семинарах 10 баллов) + 0,2 балла (при максимальной оценке за систематический обзор).

Округление получаемой оценки производится в большую сторону (в пользу студента).

Обязательным условием к допуску к промежуточной аттестации, является выполнение письменного систематического обзора.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=16972
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских занятий по дисциплине.

Семинарские занятия проводятся по единому плану:

- 1. Доклады обучающихся по темам, соответствующим содержанию дисциплины (п. 8.).
 - 2. Обсуждение представленной информации.
- 3. Знакомство с информационными источниками по теме семинара и результатами исследований по соответствующей теме.
 - г) Методические указания по проведению лабораторных работ. Лабораторные работы учебным планом не предусмотрены.
 - д) Методические указания по организации самостоятельной работы студентов. Целью самостоятельной работы обучающихся является:
- закрепление фундаментальных знаний в области ультраструктуры клетки и молекулярной биологии клетки, расширение знаний о прикладных аспектах использования достижений молекулярной биологии клетки;
 - развитие умения самостоятельно работать с учебным материалом;
- приобретение навыков поиска и реферирования доступной научной информации в области ультраструктуры клетки и клеточной биологии.

Самостоятельная работа студентов предусматривает:

- повторение лекционного материала, подготовку к семинарским занятиям;
- подготовку к экзамену.

Во время самостоятельной работы для подготовки к семинарским занятиям обучающийся может использовать рекомендованные литературные источники и интернетресурсы, а также иные источники информации (статьи в периодических изданиях и др.), позволяющие получать современную информацию об исследованиях в области ультраструктуры клетки и молекулярной биологии клетки.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Клетки по Льюину / Окс Реймонд, Джоуклин Кребс Е., Дэвид Бир Дж. [и др.]; под редакцией Л. Кассимерис [и др.]; перевод И. В. Филиппович. 3-е изд. Москва: Лаборатория знаний, 2018. 1057 с. ISBN 978-5-00101-587-1. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/88935.html (дата обращения: 22.08.2023).
- 2. Фаллер Д.М., Шилдс Д. Молекулярная биология клетки. Руководство для врачей / М.: Издательство БИНОМ. 2013. 256 с.
- 3. Луценко М.Т. Цитофизиология / Новосибирск-Благовещенск. 2011. 216 с.
- 4. Альбертс Б. и др. Основы молекулярная биологии клетки / М.: БИНОМ. Лаборатория знаний. 2015. 768 с.

- 5. Разин С.В. и др. Хроматин: упакованный геном. / С.В. Разин, А.Н. Быстрицкий. М.: БИНОМ. Лаборатория знаний. 2009. 176 с.
- 6. Татосян А.Г. и др. Механизмы активации онкогенов / А.Г. Татосян, Э.Щ. Зуева // В кн.: Клиническая онкогематология / Под ред. М.А. Волковой. М.: Медицина/ 2001. —576 с.
- 7. Ченцов Ю.С. Цитология: учебное пособие для университетов и медицинских вузов / М.: Изд-во Медицинское информационное агентство МИА. 2010. 368 с
- 8. Шабалова И.П. Цитологический атлас. M: 2005. 119 c.
- б) дополнительная литература:
- 1. Абрамова Е.Б. и др. Протеасома: разрушать, чтобы жить / Е.Б. Абрамова, Н.П. Шарова, В.Л. Карпов // Молекулярная биология. -2002. Т. 36. № 5. С.761-776
- 2. Абрамова Е.Б. и др. Протеасома: разрушение во имя созидания / Е.Б. Абрамова, В.Л. Карпов // Природа. 2003. № 7. С. 36-45.
- 3. Анализ генома, методы / Под ред. К. Дейвиса. М.: Мир. 1990. 247 с.
- 4. Александрушкина Н.И. и др. Эндонуклеазы и их участие в апоптозе растений / Н.И. Александрушкина, Б.Ф. Ванюшин // Физиология растений. 2009. T. 56. N 3. C.1-19.
- 5. Елисеев В.Г. и др. Атлас микроскопического и ультрамикроскопического строения клеток, тканей и органов // В.Г. Елисеев, Ю.И. Афанасьев, Е.Ф. Котовский, А.Н. Яцковский / М.: Медицина. 5-ое изд. 2004.
- 6. Каллиникова В.Д. Клеточная органелла кинетопласт / Л.: Наука, Ленинградское отделение. 1977. 128 с.
- 7. Мамон Л.А. Центросома как "Мозг" животной клетки // Цитология. 2008. –N 1. C. 5-17.
- 8. Марков А.В. и др. Взаимосвязь размера генома и сложности организма в эволюционном ряду от прокариот к млекопитающим / А.В. Марков, В.А. Анисимов, А.В. Коротаев // Палеонтологический журнал. 2010. С.
- 9. Снигиревская Е.С. и др. Структурно-функциональная организация аппарата Гольджи / Е.С. Снигиревская, Ю.Я. Соколова, Я.Ю. Комисарчик // Цитология. 2006/ Т. 48. N 4. С. 283-307.
- 10. Лисицына О.М., Шеваль Е.В. Происхождение и ранние этапы эволюции ядерной оболочки // Биологические мембраны: журнал мембранной и клеточной биологии. 2016. Т. 33, № 4. С. 243-251.
- 11. Тамкович С.Н., Тутанов О.С., Лактионов П.П. Экзосомы: механизмы возникновения, состав, транспорт, биологическая активность, использование в диагностике // Биологические мембраны: журнал мембранной и клеточной биологии. 2016. Т. 33, № 3. С. 163-175.
- 12. Михайлова Ю.В., Терентьева Л.Ю. Гигантские митохондриальные геномы высших растений // Успехи современной биологии. 2017. Т. 137, № 3. С. 237-246.
- 13. Wong Y.C., Ysselstein D., Krainc D. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis // Nature. V. 554, P. 382–386.
- Karamysheva T. et al. New Data on Organization and Spatial Localization of B-Chromosomes in Cell Nuclei of the Yellow-Necked Mouse Apodemus flavicollis // Cells. 2021. V. 10, 1819.
- 15. Hübner B. et al. Ultrastructure and nuclear architecture of telomeric chromatin revealed by correlative light and electron microscopy // Nucleic Acids Research. 2022. V. 50 (9), P. 5047–5063.
- 16. Deane J.A. et al. Visualizing renal primary cilia // Nephrology. 2012.

- 17. Cuylen-Haering, S., Petrovic, M., Hernandez-Armendariz, A. et al. Chromosome clustering by Ki-67 excludes cytoplasm during nuclear assembly // Nature. 2020. V. 587, P. 285–290.
- 18. Dumont S., Mitchison T.J. Force and Length in the Mitotic Spindle // Current Biology. 2009. V. 19(17), P. R749-R761.
- 19. Drpic D. et al. Chromosome Segregation Is Biased by Kinetochore Size // Curr. Biol. 2018. V. 28(9), P. 1344-1356.e5.
- 20. Kiewisz R. et.al. Three-dimensional structure of kinetochore-fibers in human mitotic spindles. 2022. eLife 11:e75459.
- в) ресурсы сети Интернет:
- Клетка. [Электронный ресурс] / URL: https://postnauka.ru/themes/kletka (дата обращения: 24.08.2023).
- Общероссийская Сеть Консультант Π люс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчике

Ананьина Татьяна Викторовна, кандидат биологических наук, доцент кафедры генетики и клеточной биологии БИ ТГУ.