Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Геолого-географический факультет

УТВЕРЖДАЮ:

Декан теолого-географического
пеографического
пео

Рабочая программа дисциплины

Физика

по направлению подготовки 05.03.01 Геология

Направленность (профиль) подготовки / специализация: «Геология»

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема 2023

Код дисциплины в учебном плане: Б1.О.14

СОГЛАСОВАНО:

Руководитель ОП

О.В. Бухарова

Председатель УМК

М.А. Каширо

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1. Способен применять знания фундаментальных разделов наук о Земле, базовые знания естественно-научного и математического циклов при решении стандартных профессиональных задач.

2. Залачи освоения лисшиплины

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 1.1. Применяет математические, в том числе статистические, методы при решении стандартных задач в практической и профессиональной деятельности;

ИОПК 1.3. Применяет знания основных законов физики при решении задач в практической и профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 обязательной части образовательной программы. Б1.О.14

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр второй, зачет.

5. Входные требования для освоения дисциплины. Постреквизиты

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Основы высшей математики, Химия.

Освоение дисциплины необходимо для успешной реализации следующих курсов: Физические методы исследования вещества Геофизические исследования скважин Полевая геофизика.

6. Язык реализации

Русский.

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- лекции: 30 ч.;
- практические занятия (в том числе, практическая подготовка) 30 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

No	Наименование		Перечень практических			
Π/	раздела	Содержание раздела дисциплины	занятий			
П	дисциплины					
Модуль «Механика»						
1	Кинематика	Системы отсчёта. Материальная точка. Способы описания движения материальной точки. Скорость. Ускорение. Кинематика вращательного движения. Кинематика твёрдого тела. Степени свободы и обобщённые координаты.	1. Кинематика материальной точки 2. Динамика материальной точки 3. Закон			
2	Динамика	Первый закон Ньютона. Инерциальные	сохранения импульса			

3	материальной точки Работа и энергия	системы отсчёта. Масса тела. Сила. Второй закон Ньютона. Роль начальных условий. Движение тел с переменной массой. Третий закон Ньютона. Полевое взаимодействие. Закон сохранения импульса. Принцип относительности Галилея. Преобразования Галилея. Работа и кинетическая энергия. Теорема Кёнига. Потенциальные и непотенциальные силы. Потенциальная энергия частицы в поле. Полная механическая энергия частицы. Потенциальных точек. Закон сохранения материальных точек. Закон сохранения механической энергии для системы материальных точек. Силы и потенциальная энергия. Условия равновесия механической системы.	4. Работа и энергия 5. Закон сохранения механической энергии
	Mo	одуль «Молекулярная физика и термодинам	іика»
1	Молекулярное строение вещества	Основные положения молекулярно- кинетической теории. Модель идеального газа. Тепловое движение. Статистический и термодинамический методы описания молекулярных систем. Равновесное состояние. Макроскопические параметры.	1. Уравнение состояния идеального газа. Процессы в газах 2. Распределение Максвелла 3. Распределение
2	Основные положения статистической физики	Элементарные сведения из теории вероятностей. Распределение скоростей молекул газа. Постановка задачи. Распределение Максвелла. Уравнение состояния идеального газа. Распределение Больцмана. Работы Перрена по	Больцмана 4. Первое и второе начала термодинамики
3	Первое и второе начала термодинамики	определению числа Авогадро. Внутренняя энергия. Количество тепла, работа. Первое начало термодинамики. Работа, совершаемая системой при изменении объема. Теплоемкость. Процессы в идеальных газах. Энтропия. Второе начало термодинамики.	
7	Жидкое состояние, явления переноса	Строение жидкости. Поверхностное натяжение. Условия равновесия на границе двух жидкостей и жидкость – твердое тело. Капиллярные явления. Виды процессов переноса. Общее уравнение переноса. Теплопроводность. Вязкость. Самодиффузия.	
		Модуль «Электричество и магнетизм»	
1	Электрическое поле в вакууме и диэлектриках	Свойства электрических зарядов. Закон Кулона. Электрическое поле. Напряженность поля. Принцип суперпозиции полей. Потенциал электрического поля. Связь между напряжённостью и потенциалом. Электрическое поле в веществе. Поле внутри диэлектриков.	1. Закон Кулона. Напряженность и потенциал электрического поля. Принцип суперпозиции 2. Теорема Гаусса для электрического поля в
2	Проводники в электрическом поле	Условия равновесия зарядов на проводнике. Проводники во внешнем электрическом поле. Ёмкость проводников.	вакууме 3. Проводники и диэлектрики. Теорема

		Конденсаторы.	Гаусса для
3	Энергия электрического поля	Электрическая энергия системы зарядов. Энергия заряженных проводника и конденсатора. Энергия электрического поля.	диэлектриков 4. Законы постоянного тока 5. Магнитное поле в
4	Постоянный электрический ток	Постоянный электрический ток. Плотность тока, сила тока. Закон сохранения электрического заряда. Электродвижущая сила. Закон Ома для однородного участка цепи. Закон Ома для неоднородного участка цепи. Закон Джоуля - Ленца.	вакууме и веществе. Закон Био-Савара-Лапласа. Магнитные силы.
5	Магнитное поле в вакууме и веществе, электромагнитная индукция	Индукция магнитного поля. Магнитная сила. Сила Лоренца. Сила Ампера. Закон Био-Савара. Преобразование полей. Виток с током в магнитном поле. Теорема Гаусса для магнитных полей. Явление электромагнитной индукции. Правило Ленца. Энергия магнитного поля.	
		Модуль «Оптика»	
1	Интерференция, дифракция и поляризация света	Электромагнитное излучение. Плоские электромагнитные волны. Общие сведения об интерференции. Интерференция двух монохроматических волн. Проблема когерентности. Принцип Гюйгенса-Френеля. Зоны Френеля. Дифракция Фраунгофера. Естественный и поляризованный свет. Закон Малюса.	1. Интерференция и дифракция электромагнитных волн 2. Распространение электромагнитных волн в средах. Дисперсия электромагнитных волн
2	Дисперсия, поглощение, рассеяние электромагнитных волн	Дисперсия, поглощение, рассеяние электромагнитных волн. Дисперсия света. Классическая теория дисперсии света. Групповая скорость. Поглощение и рассеяние света. Закон Малюса. Рассеяние света, прохождение света через мутные среды.	

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий (проверяет ИОПК 1.1)и фиксируется в форме контрольной точки не менее одного раза в семестр.

Порядок формирования компетенций, результаты обучения, критерии оценивания и перечень оценочных средств текущего контроля по дисциплине приведены в Фондах оценочных средств курса «Физика».

10. Порядок проведения и критерии оценивания промежуточной аттестации

В курсе «Физика» используется балльно-рейтинговая система оценки знаний. Максимальная сумма баллов по дисциплине составляет 100 баллов и формируется следующим образом: во 60 баллов по результатам текущей аттестации и 40 баллов по результатам промежуточной аттестации (устный зачет, проверяет ИОПК 1.3). Итоговая оценка по дисциплине складывается из суммы баллов, полученной по итогам текущего контроля и промежуточной аттестации.

Процедура проверки освоения компетенций и порядок формирования итоговой оценки по результатам освоения дисциплины «Физика» описаны в Фондах оценочных средств для данного курса.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» http://moodle.tsu.ru/course/view.php?id=1805 http://moodle.tsu.ru/course/view.php?id=1901
- б) Оценочные материалы текущего контроля (пример тестового задания, типовые контрольные вопросы для собеседования по практическим заданиям) и промежуточной аттестации по дисциплине (список вопросов к зачету).

12. Перечень учебной литературы и ресурсов сети Интернет

Основная литература

- 1. Савельев И. В. Курс физики: учебное пособие: в 3 т./ И. В Савельев. СПб.: Лань, 2016. Т.1: Механика. Молекулярная физика. 432 с.
- 2. Савельев И. В. Курс общей физики: учебное пособие: в 4 т. / И. В Савельев. М.: КноРус, 2012. Т. 2: Электричество и магнетизм. Волны. Оптика. 570 с.
- 3. Савельев И. В. Курс общей физики: учебное пособие: в 4 т. / И. В Савельев. М.: КноРус, 2012. Т. 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. 317 с.
- 4. Сивухин Д. В. Общий курс физики: в 5 т. / Д. В. Сивухин М.: Физматлит, 2014. Т. 1: Механика. 560 с.
- 5. Сивухин Д. В. Общий курс физики: в 5 т. / Д. В. Сивухин М.: Физматлит, 2014. Т. 2: Термодинамика и молекулярная физика. 544 с.
- 6. Сивухин Д. В. Общий курс физики: в 5 т. / Д. В. Сивухин М.: Физматлит, 2015. Т. 3: Электричество. 656 с.
- 7. Сивухин Д. В. Общий курс физики: в 5 т. / Д. В. Сивухин М.: Физматлит, 2015. Т. 4: Оптика. 892 с.
 - 8. Иродов И.Е. Задачи по общей физике / И.Е. Иродов. СПб.: Лань, 2016. 416 с.

Дополнительная литература

- 1. Матвеев А.Н. Механика и теория относительности / А.Н. Матвеев. М.: Высшая школа, 1976. ? с.
- 2. Матвеев А.Н. Молекулярная физика. Учеб. пособие для вузов.- М.: Высшая школа, 1981. 400 с.
- 3. Матвеев А.Н. Электричество и магнетизм. Учеб. пособие для вузов.- М.: Высшая школа, 1983.— 463 с.
- 4. Ахиезер А.И., Ахиезер И.А. Электромагнетизм и электромагнитные волны. М.: Высшая школа, 1985. 504 с
- 5. Бутиков Е.И. Оптика. М.: Высшая школа, 1986. 511 с.
- 6. Тамм И.Е. Основы электромагнетизма. Учеб. пособие для вузов., 10-е изд- испр. –М.: Наука, 1989. -501 с.
- 7. Годжаев Н.М. Оптика. М.: Высшая школа, 1977. 432 с.
- 8. Ландсберг Г.С. Оптика. М.: Наука, 1976. 848 с.
- 9. Поль Р.В. Оптика и атомная физика. М.: Наука, 1966. 552 с.
- 10. Грабовский Р.И. Курс физики. С.-Пб.: Издательство «Лань», 2007. 608 с.
- 11. Иродов И.Е. Основные законы физики макросистем. М.: Издательство «Лаборатория знаний», 2019. 207 с.

- 12. Иродов И.Е. Основные законы электромагнетизма. М.: Высшая школа, 1991. 288 с.
- 13. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты. – M: Мир, 1976. .- 234 с. (https://mipt.ru/dasr/upload/646/f 3kf8oa-arphh81ii9w.pdf)

Перечень ресурсов информационно-телекоммуникационной сети Интернет

Заседатель В.С. Моделирование сложных http://ido.tsu.ru/schools/physmat/data/res/ физических процессов. Томск 2007.

Толстик А.М., Горчаков Л.В. Компьютерный лабораторный практикум по физике. Томск 2007

models/

http://ido.tsu.ru/schools/physmat/data/res/ virtlab/

Портал Физика

Парселл Э. Электричество и магнетизм (Берклеевский курс физики, т.2)

https://ru.wikipedia.org

http://alexandr4784.narod.ru/bkurs2.html

Иродов И.Е. Волновые процессы. Основные законы. - М.: 2001

https://mf.bmstu.ru/UserFiles/File/KF/k6/ books/ph/

Irodov. t4 Volnovye protsessy Osnovnye z akony. 1999.pdf

13. Перечень информационных ресурсов

Мультимедиа презентации с использованием пакетов MS Office и OpenOffice. Все виды материально-информационной базы Научной библиотеки ТГУ. Мультимедийное оборудование физического факультета ТГУ. Сеть Интернет:

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ΤГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- библиотека – Электронная (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 96C IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Физический факультет располагает соответствующей действующим санитарнотехническим нормам материально-технической базой, обеспечивающей проведение лабораторных работ, предусмотренных программой дисциплины «Физика». Учебный процесс полностью обеспечен лабораторным оборудованием, вычислительной техникой, лицензионными программными средствами.

В составе факультета имеются:

- семь учебных лабораторий для студенческого физпрактикума, оснащенных современными лабораторными комплексами, вычислительной техникой, оборудованием и комплектующими, необходимыми для автоматизации лабораторного практикума;
- физический кабинет, располагающий уникальным демонстрационным оборудованием;
- современное телекоммуникационное оборудование, позволяющее получать и передавать учебную и информацию на различных уровнях.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Потекаев Александр Иванович, доктор физ.-мат. наук, профессор, профессор $\Phi\Phi$ ТГУ, профессор

Программа одобрена на заседании учебно-методической комиссии геолого-географического факультета «22» июня 2023 г., протокол № 7.