Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Факультет инновационных технологий

УТВЕРЖДАЮ:

Декан

<u>Меся</u> С. В. Шидловский «27» овучето 2022 г.

Рабочая программа дисциплины

Химия

по направлению подготовки

27.03.02 Управление качеством

Направленность (профиль) подготовки: Управление качеством в производственно-технологических системах

Форма обучения

Очная

Квалификация

Бакалавр

Год приема

2022

Код дисциплины в учебном плане: Б1.О.12

СОГЛАСОВАНО:

Председатель УМК

убр О.В. Вусович

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 - Способен анализировать задачи профессиональной деятельности на основе положений, законов и методов в области математики, естественных и технических наук.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-1.1 Знает основные положения, законы и методы в области математики, естественных и технических наук.

ИОПК-1.2 Способен выбирать необходимые методы математики, естественных и технических наук для анализа профессиональных задач.

2. Задачи освоения дисциплины

- сформировать представления о теоретических основах атомно-молекулярного учения, строении атома, периодическом законе и периодической системе химических элементов Д.И. Менделеева; природе и образовании химической связи в неорганических и органических соединениях, природе и свойствах растворов, окислительно-восстановительных процессах, свойствах сложных и простых веществ s, p, d семейства элементов;
- проводить химический эксперимент с использованием методов, применяемых в экологических исследованиях, согласно требованиям методических рекомендаций с соблюдением норм техники безопасности, существующих правил и ГОСТов;
- освоить методы качественного и количественного химического, научиться применять полученные методы при решении практических задач в профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 1, зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский.

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- лекции: 16 ч.;
- лабораторные работы: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Введение. Основные понятия, законы и задачи химии

Химия – фундаментальная наука. Цели, задачи и основные разделы химии. Основы атомно-молекулярного учения. Специфическое понятие химии – моль. Стехиометрические законы, закон эквивалентов.

Тема 2. Строение атома и вещества, периодичность в изменении их свойств

Строение атома. Развитие представлений о строении атома. Характеристика состояния электрона в атоме набором квантовых чисел. Атомные орбитали и их энергия Схема энергетических уровней многоэлектронных атомов. Принцип энергетической выгодности, принцип Паули, правило Хунда. Принцип построения электронных структур атомов. Электронные формулы атомов и ионов.

Периодический закон и система химических элементов Д.И. Менделеева. Периодический закон Д.И. Менделеева. Периодическая система, как классификация элементов по строению их электронных оболочек. Структура периодической системы: группы, подгруппы, периоды, семейства. Периодичность в изменении свойств (радиусов атомов и ионов, энергии ионизации, электроотрицательности, сродства к электрону и др.) атомов в зависимости от положения элементов в периодической системе Д.И. Менделеева. Периодичность в изменении химических свойств простых и сложных веществ. Степени окисления и окислительно-восстановительные свойства веществ. Окислительно-восстановительные реакции.

Химическая связь и строение вещества. Природа химической связи. Характеристики связи: энергия, длина, валентный угол, кратность, полярность, эффективный заряд атома в молекуле. Типы химических связей. Ковалентная химическая связь. Ионная связь: природа, характеристики связи и свойства ионных соединений. Водородная химическая связь: природа связи и ее влияние на свойства веществ. Металлическая химическая связь. Межмолекулярное взаимодействие (силы Ван-дер-Ваальса): ориентационные, индукционные, дисперсионные.

Тема 3. Растворы

Типы растворов. Истинные растворы. Образование раствора — физико-химические процессы. Растворимость и факторы, влияющие на растворимость. Способы выражения содержания растворенного вещества в растворе. Закон действующих масс. Растворы электролитов. Гетерогенные равновесия в растворах электролитов. Ионное произведение воды и водородный показатель. Гидролиз солей.

Тема 4. Основы качественного и количественного анализа

Исследование качественных реакций, открывающих ионы металлов (согласно кислотно-щелочной классификации) и некоторых кислотных остатков. Использование методов кислотно-основного и комплексонометрического титрования при анализе объектов (лекарственных средств и т.д.).

8.1. Примерный перечень лабораторных работ

Изучение качественных реакций на катионы и анионы Контрольная работа. Анализ смеси катионов 1-6 аналитических групп Кислотно-основное титрование. Определение содержания органических кислот Определение жесткости воды методом комплексонометрического титрования.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных лабораторных работ, сдачей отчётов по лабораторным работам и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в третьем семестре проводится в устной форме по билетам. Билет для зачета состоит из двух частей: тест и практическое задание. Продолжительность зачета 1,5 часа.

Примерный перечень тестовых заданий

Выберите один правильный ответ из числа предложенных вариантов.

- 1. Сильным электролитом является
- 1) HF
- H_2SO_3
- H_3PO_4
- 4) HCl

Расположите вещества в порядке, соответствующем изменению их свойств.

- 2. Расположите растворители равной концентрации в порядке увеличения растворимости в них BaSO₃:
 - A) HCl
 - Б) H₂SO₄
 - B) CH₃COOH
 - Γ) NaOH

Выберите несколько правильных ответов из числа предложенных вариантов.

- 3. Какие из указанных растворителей можно использовать для переведения в раствор $Al(OH)_3$?
 - A) HCl
 - Б) C₂H₅OH
 - B) NaOH
 - Γ) HNO₃ конц.
 - Д) H_2SO_4 конц.
 - E) C_6H_6OH

Найдите соответствие между элементами двух множеств.

- 4. Укажите соответствие между окислительно-восстановительным процессом и выделяющимся в результате протекания реакции газом.
 - 1) $Cu + HNO_3$ (pas6.) A) NO_2
 - 2) Zn + HCl (конц.) Б) NO
 - 3) Cu + HNO₃ (конц.) B) SO₂
 - 4) $Zn + H_2SO_4$ (pa36.) Γ) H_2

Пример практического задания

- 1. Составьте схему анализа смеси, содержащей следующие ионы: K^+ , Al^{3+} , Fe^{3+}
- 2. Рассчитайте содержание Fe^{3+} в растворе, если известно, что на титрование 10 см3 было затрачено в трех параллельных определениях 12,72; 12,53; 12,85 см³ раствора KMnO₄ с концентрацией 0,025 моль/л (f=1/5).

Результаты зачета определяются оценками «зачтено», «не зачтено».

«Зачтено» ставится если студент продемонстрировал понимание основных закономерностей и законов, используемых в химии при ответе на тестовые вопросы и практические задания, выполнил лабораторный практикум в полном объеме и представил отчеты по ним. «Не зачтено» ставится, если студент не выполнил лабораторные работы или не сдал отчеты, правильно ответил меньше, чем на 50% тестовых заданий или не справился с практическим заданием.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=3439
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) Методические указания по проведению лабораторных работ.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Никитина, Н. Г. Аналитическая химия и физико-химические методы анализа : учебник и практикум для вузов / Н. Г. Никитина, А. Г. Борисов, Т. И. Хаханина ; под редакцией Н. Г. Никитиной. 4-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 394 с. (Высшее образование). ISBN 978-5-534-00427-4. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://www.urait.ru/bcode/510484 (дата обращения: 25.01.2023).
- Борисов, А. Н. Аналитическая химия. Расчеты в количественном анализе : учебник и практикум для среднего профессионального образования / А. Н. Борисов, И. Ю. Тихомирова. 3-е изд., испр. и доп. Москва : Издательство Юрайт, 2023. 146 с. (Профессиональное образование). ISBN 978-5-534-13828-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://www.urait.ru/bcode/513280 (дата обращения: 25.01.2023).
- Ахметов Н.С. Общая и неорганическая химия. М.: Высшая школа, 2001, 743 с. (Доступно в библиотеке ТГУ, электронная версия: https://moodle.tsu.ru/course/view.php?id=18283; http://lib.maupfib.kg/wp-content/uploads/2015/12/ahmetov_obshaia_i_neorganicheskaia_himia_2001.pdf).
- Неорганическая химия: В 3 т /Под ред. Ю.Д. Третьякова. М.: Изд. Центр «Академия», 2004. Т. 1. 233 с.; Т. 2. 365 с.; 2008. Т. 3. 348 с. (Доступно в библиотеке ТГУ, электронная версия: https://moodle.tsu.ru/course/view.php?id=18283;; https://lib.maupfib.kg/wp-content/uploads/2015/12/glinka_obshaja_himija.pdf.
- Ершов Ю. А. Общая химия. Биофизическая химия. Химия биогенных элементов в 2 кн. Книга 1: учебник для вузов / Ю. А. Ершов, В. А. Попков, А. С. Берлянд. 10-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 215 с. (URL: https://urait.ru/bcode/452203).
 - б) дополнительная литература:
- Ахметов Н. С. Лабораторные и семинарские занятия по общей и неорганической химии / Ахметов Н. С., Азизова М. К., Бадыгина Л. И.. Санкт-Петербург: Лань, 2021. 368 с. URL: https://e.lanbook.com/img/cover/book/168686.jpg
- Глинка Н.Л. Общая химия. Учебное пособие. Изд. Кнорус, 2016. 752 с. (Доступно в библиотеке ТГУ, электронная версия: https://moodle.tsu.ru/course/view.php?id=18283; http://lib.maupfib.kg/wp-content/uploads/2015/12/glinka_obshaja_himija.pdf).
- Жебентяев, А.И. Аналитическая химия. Практикум : учеб. пособие / А.И. Жебентяев, А.К. Жерносек, И.Е. Талуть. Минск : Новое знание ; Москва : ИНФРА-М, 2013. 428 с. (Высшее образование). ISBN 978-985-475-582-3 (Новое знание). ISBN 978-5-I6-009043-6 (ИНФРА-М). Текст : электронный. URL: https://znanium.com/catalog/product/419619 (дата обращения: 01.02.2023). Режим доступа: по подписке.
- Васильев, А. В. Количественный анализ. Лабораторный практикум: учебное пособие / А. В. Васильев, Л. В. Кондратьева, Ю. Н. Коваль. Железногорск: ФГБОУ ВО Сибирская пожарно-спасательная академия ГПС МЧС России, 2022. 157 с. Текст: электронный. URL: https://znanium.com/catalog/product/1880642 (дата обращения: 01.02.2023). Режим доступа: по подписке.
 - в) ресурсы сети Интернет:
- Открытый онлайн курс «Аналитическая химия. Химические методы» (https://openedu.ru/course/ssau/Analytical_chemistry/?session=Spring_2022)
- Открытый онлайн курс «Аналитическая химия. Титриметрия и гравиметрия» (https://openedu.ru/course/ssau/Analytical_chemistry_2/)

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?<u>locale=ru&theme=system</u>
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 3FC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лаборатории, оборудованные химическим стеклянным оборудованием, с вытяжными тягами.

15. Информация о разработчиках

Шелковников Владимир Витальевич, кандидат химических наук, доцент, заведующий кафедрой аналитической химии.

Михальченков Марк Васильевич, ассистент кафедры аналитической химии.