Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ:

Декан физического факультета

С.Н. Филимонов

«15»

апреля

2021 г.

Рабочая программа дисциплины

Теория твердого тела

по направлению подготовки

03.03.02 Физика

Направленность (профиль) подготовки: «Фундаментальная физика»

Форма обучения Очная

Квалификация **Бакалавр**

Год приема 2021

Код дисциплины в учебном плане: Б1.В.ДВ.01.01.01

СОГЛАСОВАНО:

Руководитель ОП

Ушу О.Н. Чайковская

Председатель УМК

О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК 2 Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные;
- $-\Pi K$ -1 Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-2.2 — Анализирует и интерпретирует экспериментальные и теоретические данные, полученные в ходе научного исследования, обобщает полученные результаты, формулирует научно обоснованные;

ИПК-1.1 — Собирает и анализирует научно-техническую информацию по теме исследования, обобщает научные данные в соответствии с задачами исследования.

2. Задачи освоения дисциплины

- Освоить понятийный аппарат и методы теории твердого тела.
- Научиться применять понятийный аппарат и методы теории твердого тела для решения практических задач профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, входит в модуль по выбору «Теоретическая и математическая физика».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 5, зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Математический анализ, Линейная алгебра и аналитическая геометрия, Дифференциальные уравнения, Теория вероятностей, Общая физика, Классическая механика, Квантовая механика, Методы математической физики, Программирование, Практикум по численным методам.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 з.е., 72 часа, из которых:

- лекции: 16 ч.;
- практические занятия: 16 ч.;
- в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Экспериментальные основания и основные положения в физике твердого тела.

Дифракции рентгеновских лучей в кристаллах. Эквивалентность формулировок Брэгга и Лауэ. Атомный и структурный фактор рассеяния. Обзор экспериментальных методов. Основные приближения для описания твердого тела.

Тема 2. Описание структуры кристаллов.

Элементарные ячейки, примитивная и условная ячейка. Решетка Браве, прямая и обратная решетка, их свойства. Важные примеры структур. Кристаллические структуры и решетки с базисом. Ячейка Вигнера-Зейтца и первая зона Бриллюэна. Важные свойства кристаллических решеток. Атомные плоскости и индексы Миллера. Правила обозначения плоскостей и направлений. Задачи.

Тема 3. Симметрия в твердом теле.

Трансляционная симметрия и точечная симметрия твердых тел. Примеры операций симметрии. Пространственные группы. Классификация решеток Браве. Двумерные и трехмерные кристаллические системы, точечные и пространственные группы. Обозначения Шефлиса и международные обозначения.

Тема 4. Классификация твердых тел по типам связи.

Основные типы связи в кристаллах. Кристаллы инертных газов, ковалентные и ионные кристаллы. Металлы. Кристаллы с водородной связью. Когезионная энергия. Параметрические модели сил связи в кристаллах. Силы Ван-дер-Ваальса-Лондона. Энергия Маделунга. Определение равновесных параметров решетки и модуля всестороннего сжатия из параметрических моделей.

Тема 5. Теория механических свойств кристаллов.

Упругие свойства кристаллов. Тензор деформации и напряжения. Обобщенный закон Гука. Энергия деформации кристалла. Влияние симметрии на упругие свойства кристаллов. Конкретные примеры.

Тема 6. Упругие волны в кристаллах.

Упругие волны в кристаллах. Поперечные и продольные волны и их скорости в зависимости от направления распространения в кристаллах. Соотношения Коши. Теоретическое объяснение упругих констант.

Тема 7. Реальные кристаллы.

Сплавы. Твердые растворы замещения и внедрения, сверхструктуры. Вакансии и примеси в кристаллической решетке, их диффузия. Процессы упорядочения в сплавах, дальний и ближний порядок. Дислокации. Вектор Бюргерса. Поля напряжений. Плотность дислокаций. Размножение дислокаций и скольжение. Прочность кристаллов.

Тема 8. Поверхность и поверхностные эффекты.

Типы поверхностных структур, влияние поверхности на энергию связи электронов. Работа выхода. Релаксация и реконструкция поверхности, адсорбция и сегрегация на поверхности.

Тема 9. Классическая теория гармонического кристалла.

Гармоническое приближение. Удельная теплоемкость классического кристалла. Закон Дюлонга-Пти. Колебания одномерной моноатомной решетки Браве и с базисом. Акустические и оптические ветви колебаний. Нормальные моды трехмерной моноатомной решетки и решетки с базисом.

Тема 10. Квантовая теория гармонического кристалла, фононы.

Квантово-механическое рассмотрение задачи о малых колебаниях кристалла. Понятие фононов. Теплоемкость при низких и высоких температурах. Приближение Дебая и Эйнштейна. Плотность фононных уровней. Ангармонические эффекты в кристаллах.

Уравнение состояния и тепловое расширение кристалла. Параметр Грюнайзена. Экспериментальные методы определения фононных частот.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится с применением балльно-рейтинговой системы, включающей контроль посещаемости, результаты выполнения контрольных работ, заданий и тестов по материалам курса, и фиксируется в форме баллов (нарастающим итогом): посещаемость — максимальный балл 10, выполнение контрольных заданий — 40, тестов — 10. Контрольная точка проводится не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в 5 семестре проводится в письменной форме по экзаменационным билетам.

Результаты зачета определяются оценкой «зачтено» исходя из результатов ответов на зачете (40%) и текущей аттестации в течение семестра (60%) в соответствии с балльной шкалой оценивания: количество набранных баллов более 59- «зачтено», менее 59 баллов – «не зачтено».

Экзаменационный билет состоит из двух частей.

Первая часть представляет собой тест из 2-х основных вопросов, проверяющих сформированность компетенции ОПК-2 в соответствии с индикатором ИОПК-2.2.

Ответы даются в развернутой форме.

Вторая часть содержит 1 дополнительный вопрос из списка контрольных вопросов по курсу (приведен в разделе 11), проверяющих соответствие индикатору достижения компетенции ИПК 1.1. Ответ на вопрос второй части дается в краткой форме, включающей краткую интерпретацию полученных результатов.

Примерный перечень теоретических вопросов

Вопрос 1. Опишите бесконечно малое искажение, переводящее простую гексагональную решетку в одну из решеток Браве.

Вопрос 2. Докажите, что основные вектора обратной решетки удовлетворяют

соотношению
$$b_1(b_2 \times b_3) = \frac{(2\pi)^3}{a_1(a_2 \times a_3)}$$
.

Дополнительные вопросы.

Вопрос 1. Объясните связь между кристаллическими классами и симметрией.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=22016
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

Перечень вопросов, выносимых на зачет.

- 1. Эквивалентность формулировок Брэгга и Лауэ для дифракции рентгеновских лучей в кристаллах.
- 2. Дифракция рентгеновских лучей на моноатомной и полиатомной решетке. Атомный и геометрический структурный фактор.
- 3. Геометрия решеток Браве, примитивная и условная решетка. Примеры кристаллических структур.
 - 4. Атомные плоскости и индексы Миллера.
- 5. Теория групп и ее применение к теории твердого тела на примере одномерного кристалла.
 - 6. Трансляционная и точечная симметрия твердых тел. Примеры операций симметрии.

- 7. Классификация решеток Браве по симметрии.
- 8. Элементы симметрии и их свойства.
- 9. Кристаллические классы и их классификация по симметрии.
- 10. Симморфные и несимморфные пространственные группы.
- 11. Межатомные силы и классификация кристаллов по типу связи.
- 12. Атомные и ионные радиусы. Силы Ван-дер-Ваальса-Лондона.
- 13. Механизмы сил связи в ковалентных и ионных кристаллах.
- 14. Энергия Маделунга. Оценка равновесных параметров решетки и модуля всестороннего сжатия в ионных кристаллах.
 - 15. Параметрические модели сил связи в кристаллах.
 - 16. Обобщенный закон Гука.
 - 17. Влияние симметрии на упругие свойства кристаллов.
 - 18. Распространение упругих волн в средах с кубической симметрией.
- 19. Поперечные и продольные волны и их скорости в зависимости от направления распространения в кристаллах.
 - 20. Теоретическое объяснение упругих констант.
 - 21. Вакансии и примеси в кристаллической решетке, их диффузия.
 - 22. Линейные и плоские дефекты в твердом теле.
 - 23. Энергетика связи электронов в поверхностных слоях.
 - 24. Типы поверхностных структур и работа выхода.
 - 25. Удельная теплоемкость классического кристалла.
 - 26. Нормальные моды одномерной моноатомной решетки Браве и с базисом.
 - 27. Акустические и оптические ветви колебаний в трехмерном кристалле.
 - 28. Квантово-механическое рассмотрение задачи о малых колебаниях кристалла.
 - 29. Общее выражение для теплоемкости и приближение низких и высоких температур.
- 30. Ангармонические эффекты в кристаллах. Уравнение состояния и тепловое расширение кристалла.
 - в) План семинарских / практических занятий по дисциплине.
- 1. Кристаллические структуры и решетки. Зоны Бриллюэна. Атомные плоскости и индексы Миллера.
 - 2. Симметрии в твердом теле. Пространственные группы.
- 3. Типы связи в кристаллах. Модели сил связи. Силы Ван-дер-Ваальса-Лондона. Энергия Маделунга. Определение равновесных параметров решетки и модуля всестороннего сжатия из параметрических моделей.
- 4. Механические свойства кристаллов. Тензор деформации и напряжения. Обобщенный закон Гука. Энергия деформации кристалла.
- 5. Упругие волны в кристаллах. Поперечные и продольные волны и их скорости в зависимости от направления распространения в кристаллах.
- 6. Поверхностные свойства. Типы поверхностных структур, влияние поверхности на энергию связи электронов. Работа выхода.
- 7. Гармоническое приближение. Удельная теплоемкость классического кристалла. Закон Дюлонга-Пти. Колебания одномерной моноатомной решетки Браве и с базисом. Акустические и оптические ветви колебаний. Нормальные моды трехмерной моноатомной решетки и решетки с базисом.
- 8. Квантово-механическое рассмотрение задачи о малых колебаниях кристалла. Понятие фононов. Теплоемкость при низких и высоких температурах. Приближение Дебая и Эйнштейна.
 - г) Методические указания по организации самостоятельной работы студентов. Самостоятельная работа студента включает:
- углубленное теоретическое изучение разделов курса при подготовке к лекционным и практическим занятиям;

- подготовку к обсуждению материала, в том числе самостоятельный поиск необходимых источников информации, включая научно-образовательные ресурсы сети Интернет;
- подготовку к зачету.

Вопросы, вынесенные на самостоятельное изучение.

- 1. Экспериментальные методы изучения структуры твердых тел.
- 2. Свойства обратной решетки и их доказательства.
- 3. Элементы симметрии и их обозначения.
- 4. Приложение теории групп к физике твердого тела. Приводимые и неприводимые представления. Характеры представлений.
 - 5. Классификация диэлектриков. Полупроводники. Ковалентная связь в кристаллах.
- 6. Континуальная модель твердого тела и упругие свойства кристаллов с низкой симметрией.
 - 7. Зависимость между модулями упругости и силами связи в кристаллах.
 - 8. Теория упорядочения в сплавах.
 - 9. Влияния адсорбатов на поверхностные эффекты.
 - 10. Нормальные моды трехмерных решеток.
- 11. Экспериментальные методы определения фононных частот. Рассеяние электронов кристаллом. Бесфононное рассеяние, однофононное и двухфононное рассеяние.

Темы для рефератов и учебно-методическая литература для самостоятельной работы по разделам дисциплины «Теория твердого тела»:

Тема 1. Теория симметрии в твердом теле.

Литература:

- 1. Нокс Р., Голд А. Симметрия в твердом теле. M.: Hayka, 1970. 424c.
- 2. Штрайтвольф Г. Теория групп в физике твердого тела. М.: Мир, 1971. 262 с.
- 3. Бирман Дж. Пространственная симметрия и оптические свойства твердых тела. М.: Мир, 1978. Т.1,2.
- 4. Хейне В. Теория групп в квантовой механике. М.: ИЛ, 1963. 524 с.
- 5. Хамермеш Л. Теория групп и ее применение к физическим проблемам. М.: Мир, 1966. 587 с.
- 6. Вигнер Е. Теория групп и ее применения к квантовомеханической теории атомных спектров. М.: ИЛ, 1961. 443 с.

<u>Тема 2. Теоретические и экспериментальные методы изучения фононов в реальных кристаллах.</u>

Литература:

- 1. Бетгер Х. Принципы динамической теории решетки. М.: Мир, 1986. 392 с.
- 2. Гуревич В.Л. Кинетика фононных систем. М.: Наука, 1980. 400 с.
- 3. Займан Дж. Электроны и фононы. М., ИЛ, 1962. 488 с.
- 4. Рейсленд Дж. Физика фононов. M.: Мир, 1975. 367 с.
- 5. Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978. 791 с.
- 6. Киттель Ч. Квантовая теория твердых тел. М.: Наука, 1967. 292 с.
- 7. Гантмахер В.Ф. Рассеяние носителей тока в металлах и полупроводниках/ В.Ф. Гантмахер, И.Б. Левинсон. М.: Наука, 1984. 352 с.
- 8. Егорушкин В.Е. Электроны и фононы в неупорядоченных сплавах/ В.Е. Егорушкин, А.И. Кульментьев, Е.В. Савушкин. –М.: Наука, 1989. 272 с.

Тема 3. Дефекты в твердом теле.

Литература:

1. Ашкрофт Н. Физика твердого тела/Н. Ашкрофт, Н. Мермин Н. – М.: Мир, 1979. Т.1,2.

- 2. Павлов П.В. Физика твердого тела/ П.В. Павлов, А.Ф. Хохлов. –. М.: Высшая школа, 2000.-494 с.
- 3. Дегтяренко Н.Н. Свойства дефектов и их ансамблей, радиационная физика твердого тела. М.: НИЯУ МИФИ, 2011. 200 с.
- 4. Марадудин А. Дефекты и колебательный спектр кристаллов. М.: Мир, 1968. 432 с.
- 5. Левин В.А. Развитие дефектов при конечных деформациях. Компьютерное и физическое моделирование/ В.А. Левин [и др.]. –М.: Физматлит, 2007. 392 с.
- 6. Маделунг О. Физика твердого тела. Локализированные состояния. М.: Наука, 1985. 184

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Cabra D. C., Honecker A., Pujol P. (ed.). Modern theories of many-particle systems in condensed matter physics/ D.C. Cabra, A. Honecker, P. Pujol. (ed.). N.Y.: Springer Science & Business Media, 2012. V. 843.
- 2. Владимиров Г.Г. Физика поверхности твердых тел: [учебное пособие для студентов направлений подготовки "Физика", "Прикладные математика и физика", "Радиофизика"].— Санкт-Петербург [и др.]: Лань, 2016. 348 с.
- 3. Бутягин П.Ю. Химическая физика твердого тела. М: Изд-во Моск. ун-та, 2006. –269 с.
 - б) дополнительная литература:
- 1. Ашкрофт Н. Физика твердого тела / Н. Ашкрофт, Н. Мермин М.: Мир, 1979. Т. 1,2.
- 2. Киттель Ч.. Введение в физику твердого тела. –М.: Наука, 1978. 791 с.
- 3. Блекмор Дж. Физика твердого тела. М.: Мир, 1988. 608 с.
- 4. Займан Дж. Принципы физики твердого тела. М.: Мир, 1974. 416 с.
- 5. Xаррисон У. Теория твердого тела. M.: Мир, 1972. 616 с.
- 6. Шульце Г. Металлофизика. M.: Мир, 1971. 503c.
- 7. Лейбфрид Р. Микроскопическая теория механических и тепловых свойств кристаллов. Москва-Ленинград: ГИФЛМ, 1963. 312 с.
- 8. Конусов В.Ф. Основы теории твердого тела. (учебное пособие). Томск: Изд-во ТГУ. 1983. 129 с.
- 9. Давыдов A.C. Теория твердого тела. M.: Hayka, 1976. 639 с.
- 10. Маделунг О. Теория твердого тела. М.: Наука, 1980. 416 с.
- 11. Немошкаленко В.В. Методы вычислительной физики в теории твердого тела/ В.В. Немошкаленко, В.И. Антонов. Киев: Наукова Думка, 1985. 406 с.
- 12. Достижения электронной теории металлов. Под редакцией П. Цише, Г. Леммана. М.: Мир, 1984, Т.2. 657 с.
- 13. Зенгуил Э. Физика поверхности. М.: Мир, 1990. 536 с.
- 14. Ормонт Б.Ф. Введение в физическую химию и кристаллохимию полупроводников. М.: Высшая школа, 1982. 528 с.
- 15. Смит Дж. Теория хемосрорбции. M.: Mир, 1983. 333 c.
- 16. Задачи по физике твердого тела. Под ред. Г.Дж. Голдсмид. М.: Наука, 1976. 431 с.
 - в) ресурсы сети Интернет:

Том 6 курса системы открытого образования "Физика в техническом университете" Физика твердого тела http://fn.bmstu.ru/data-physics/library/physbook/tom6/content.htm

В.А. Гуртов, Р. Н. Осауленко, Физика твердого тела для инженеров http://dssp.petrsu.ru/p/tutorial/ftt/

https://e.lanbook.com/book/73515

Видеолекции Физтеха http://lectoriy.mipt.ru/course/Physics-Solidstate-13L#about Кристаллографическая база данных http://www.cryst.ehu.es/

Колебания в кристаллах, анимация

http://fn.bmstu.ru/data-physics/library/physbook/tom6/ch3/texthtml/ch3_2.htm

Справочник по химическим элементам и соединениям

https://www.webelements.com/

Physics Word поисковая система: http://physicsworld.com/

Г.И. Епифанов. Физика твердого тела. (учебное пособие)

http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=2023

А.Б. Гордиенко, А.В. Кособуцкий, Физика конденсированного состояния. Электронное пособие по решению задач.

https://biblioclub.ru/index.php?page=book&id=232487

http://physic.kemsu.ru/pub/library/learn_pos/prof_pos/PosobieFKS/SSP.html

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office OneNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook); системы компьютерной вёрстки LaTex;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
 - Электронный каталог Научной библиотеки ТГУ –

http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system

– Электронная библиотека (репозиторий) ТГУ –

http://vital.lib.tsu.ru/vital/access/manager/Index

- ЭБС Лань http://e.lanbook.com/
- ЭБС Консультант студента http://www.studentlibrary.ru/
- Образовательная платформа Юрайт https://urait.ru/
- ЭБС ZNANIUM.com https://znanium.com/
- 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного типа, практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате, оснащенные системой («Актру»).

15. Информация о разработчиках

Кулькова Светлана Евгеньевна, доктор физико-математических наук, профессор, кафедра теоретической физики физического факультета ТГУ, профессор.