Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Геолого-географический факультет

УТВЕРЖДАЮ:

Декан геолого-географического

факультета

римин П.А. Тишин

«29» июня 2022 г.

Рабочая программа дисциплины

Минералогия

по направлению подготовки 05.03.01 Геология

Направленность (профиль) подготовки / специализация: «Геология»

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема 2022

Код дисциплины в учебном плане: Б1.О.17

СОГЛАСОВАНО:

Руководитель ОП

О.В. Бухарова

Председатель УМК

М.А. Каширо

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1. Способен применять знания фундаментальных разделов наук о Земле, базовые знания естественно-научного и математического циклов при решении стандартных профессиональных задач

ОПК-2. Способен использовать знание теоретических основ фундаментальных геологических дисциплин при решении задач профессиональной деятельности

2. Задачи освоения дисциплины

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 2.1. Анализирует и систематизирует геологическую информацию и другие фактические материалы, используя знания о минералах, горных породах и окаменелостях

ИОПК 1.2. Решает задачи профессиональной деятельности на основе современных представлений о свойствах химических веществ и реакциях между ними

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 обязательной части образовательной программы. Б1.О.17.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 2, экзамен.

Семестр 3, экзамен.

5. Входные требования для освоения дисциплины. Постреквизиты

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Кристаллографии, Общей геологии, Химии, Физике.

Освоение дисциплины необходимо для успешной реализации следующих курсов: Петрография, Литология, Геохимия геологических процессов, Геология месторождений полезных ископаемых, Физические методы исследования вещества, Промтипы месторождений полезных ископаемых, Петрология, Методы минералого-геохимических исследований, Методы петрографических исследований, Методы литологических исследований, Шлиховой метод, Поиски и разведка месторождений полезных ископаемых, Геохимические методы поисков месторождений полезных ископаемых и их прогноз, Геология России, Геостатистика и математическое моделирование геологических объектов и процессов.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 7 з.е., 252 часа, из которых:

- лекции: 50 ч.;
- практические занятия (в том числе, практическая подготовка) 88 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

8.1 Введение.

Минералогия — наука о минералах. Предметы исследования минералогии, цели и задачи. История становления минералогии в качестве самостоятельной научной дисциплины. Минералогическое общество России и международные минералогические организации. Отечественные и зарубежные периодические издания минералогического профиля. Учебная и справочная литература. Минералогические музеи. Основные направления современной минералогии и области их интересов

8.2 Состав и структура минералов.

8.2.1 Основные понятия минералогии. Минерал, минеральный вид, минеральный индивид. Обусловленность физических свойств минералов. Разновидности минералов.

Структура минералов. Кристаллическая решетка минералов, свойства кристаллических веществ. Химическая связь в минералах, ее природа, типы и отражение в физических свойствах минералов. Основные типы кристаллических структур. Понятие о полиморфизме, политипии, явлении порядка и беспорядка.

8.2.2 Химический состав минералов. Общие сведения о распространенности химических элементов в природе, их минералообразующая способность. Химические формулы минералов. Изоморфизм как явление, условия и типы изоморфизма. Твердые растворы в природных соединениях. Вода в минералах, её типы и значение для целей диагностики и решения генетических вопросов.

Классификация минералов. Формальный и научный подход в выборе классификационных признаков. Принципы современной кристаллохимической классификации минералов.

8.3 Физические свойства минералов.

- **8.3.1 Морфологические свойства минералов.** Общие представления о механизме роста кристаллов. Облик и габитус кристаллов. Скульптура граней кристаллов: штриховка, паркетчатость, формы роста и растворения. Двойники, их типы. Скелетные и расщепленные кристаллы, дендриты. Друзы кристаллов как реализация закона геометрического отбора при их формировании. Типы минеральных агрегатов (зернистые, графические, конкреции, оолиты, натечные, землистые, псевдоморфозы), их характеристика и генетическая природа. Возможность использования морфологических характеристик в диагностических целях.
- **8.3.2** Оптические свойства минералов. Окраска минералов, её природа, современная классификация. Идиохроматическая, аллохроматическая, псевдохроматическая окраска. Прозрачность, критерии оценки и причины видоизменения. Блеск минералов, его классификация, видоизменение. Цвет черты минералов. Побежалость.
- **8.3.3 Механические свойства минералов.** Спайность, причины появления спайности. Отдельность, излом. Твердость, относительная и абсолютная твердость. Методы определения твердости. Хрупкость, ковкость, пластичность, упругость. Плотность и методы ее определения. Диагностическое значение механических свойств.
- **8.3.4 Прочие свойства минералов.** Магнитность, причины появления магнитных свойств минералов. Группы минералов с учетом магнитных свойств. Электрические свойства минералов. Радиоактивность, причины появления радиоактивности. Метамиктный распад. Люминесценция, виды люминесценции. Физическая суть явления. Экзотические свойства минералов (вкус, ощущение жирности на ощупь, химические реакции и др.). Диагностическое значение прочих свойств минералов.

8.4 Генезис минералов.

8.4.1 Основные понятия генетической минералогии. Физико-химические условия минералообразования. Агрегатное состояние среды минералообразования. Минеральная ассоциация, минеральный парагенезис, этапы и стадии минералообразования. Общая классификация процессов минералообразования.

8.4.2 Характеристика магматогенных процессов минералообразования.

Магмы и магматическое минералообразование с комплексом сопровождающих его явлений (кристаллизационная и гравитационная дифференциация, ликвация, ассимиляция

и контаминация, десиликация, автометаморфизм). Эффузивное минералообразование и вулканические эксгаляции.

- **8.4.3 Позднемагматическое и постмагматическое минералообразование** в условиях открытых и закрытых систем (карбонатиты, пегматиты, грейзены, скарны, гидротермальные системы).
- **8.4.4 Метаморфические процессы.** Региональный метаморфизм. Ступени и фации метаморфизма. Контактовый метаморфизм. Импактный метаморфизм.
- **8.4.5** Экзогенные процессы. Минералообразование в условиях гипергенеза (коры выветривания, зоны окисления, инфильтрация, карст). Осадочный процесс (механические, химические, биоимические осадки).
 - 8.5 Общее представление о типоморфизме минералов.
- **8.6 Современные тенденции в развитии минералогии.** Наноминералогия. Минералогическая диатропика.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине во втором семестре проводится путем контроля посещаемости, проведения малых контрольных работ по каждой теме практических занятий второго семестра, включающих теоретические вопросы, и 2-х контрольных работ, предполагающих практическое определение минералов: контрольная работа 1 (6 образцов минералов кл. самородных элементов, сульфидов и их аналогов), контрольная работа 2 (5 образцов минералов кл. оксидов и гидроксидов). Контрольные работы считаются незачтенными при неправильном определении 1-2 минералов, что требует повторного выполнения контрольной работы. Результаты текущего контроля фиксируются в форме контрольной точки не менее одного раза в семестр.

Содержание и темы практических занятий 2 семестра

Знакомство физическими свойствами минералов. Их практическое определение и диагностическое значение.

Характеристика минералов класса простых веществ (самородных металлов и неметаллов): меди, серебра, золота; алмаза, графита, серы.

Характеристика сульфидов: халькозин, галенит, сфалерит, халькопирит, пирротин, пентландит, борнит, киноварь, реальгар, антимонит, висмутин, молибденит, пирит.

Характеристика сульфоарсенидов: арсенопирит, кобальтин, герсдорфит.

Характеристика сульфосолей: ряд теннантита-тетраэдрита, буланжерит.

Общая характеристика минералов класса оксидов и гидроксидов. Методический подход при их определении.

Характеристика оксидов: куприт, корунд, гематит, ильменит, шпинель, магнетит, браунит, рутил, касситерит, пиролюзит, уранинит, ряд колумбита-танталита, пирохлор, семейство кремнезема.

Характеристика гидроксидов: гидраргиллит, бёмит, диаспор, псиломелан, гетит, гидрогётит.

Текущий контроль по дисциплине в третьем семестре проводится путем контроля посещаемости, проведения малых контрольных работ по каждой теме практических занятий третьего семестра, включающих теоретические вопросы, и 2-х контрольных работ, предполагающих практическое определение минералов: Контрольная работа 1 (4 образца минералов классов кислородных солей), Контрольная работа 2 (8 образцов минералов силикатов и алюмосиликатов). Контрольные работы считаются незачтенными при неправильном определении 1 минерала первой контрольной работы и 2-3 образцов второй контрольной работы, что требует повторного выполнения контрольной работы. Результаты текущего контроля фиксируются в форме контрольной точки не менее одного раза в семестр.

Содержание и темы практических занятий 3 семестра

Характеристика минералов класса карбонатов: кальцита, доломита, магнезита, сидерита, родохрозита, смитсонита; арагонита, церуссита; малахита, азурита.

Характеристика минералов класса сульфатов: барита, англезита, ангидрита, гипса, алунита, ярозита.

Характеристика минералов класса вольфраматов: вольфрамита, шеелита.

Характеристика минералов класса фосфатов: апатита, монацита, торбернита.

Характеристика минералов класса галогенидов (фторидов, хлоридов): флюорита, галита, сильвина.

Кристаллохимические типы структур силикатов и алюмосиликатов. Отражение структурных особенностей на физических свойствах силикатов и алюмосиликатов. Общая характеристика минералов этого класса соединений.

Общая характеристика минералов с каркасным кристаллохимическим типом структур: группы полевых шпатов, нефелина, лазурита, скаполита.

Характеристика минералов с островным кристаллохимическим типом структуры с изолированными кремнекислородными тетраэдрами: циркон, группа оливина, группа гранатов, топаз, дистен, андалузит, ставролит, сфен.

Характеристика минералов со сдвоенными кремнекислородными тетраэдрами: эпидот, ортита и с кольцевыми структурами: берилл, турмалин и кордиерит.

Характеристика минералов с цепочечным и ленточным кристаллохимическими типами структур. Группа пироксенов: энстатита, гиперстена; диопсида, геденбергита, авгита, эгирина, сподумена. Группа. амфиболов: тремолита, актинолита, роговой обманки, арфведсонита.

Характеристика минералов со слоистым кристаллохимическим типом структур: гуппа слюд (мусковит, биотит, флогопит, лепидолит), группа хлоритов (ортохлориты, лептохлориты), группа талька (тальк, пирофиллит), гуппа серпентина (серпентин, антигорит, хризотил-асбест), группа глинистых минералов (каолинит, галлуазит, монтмориллонит, хризоколла).

Характеристика минералов группы цеолитов: шабазита, гейландита, натролита, десмина.

Порядок формирования компетенций, результаты обучения, критерии оценивания и перечень оценочных средств текущего контроля по дисциплине приведены в Фондах оценочных средств курса «Минералогия».

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен во втором семестре проводится в устной форме по билетам. Билет содержит 2 теоретических вопроса по лекционной части курса и один теоретический по темам практических занятий. Продолжительность экзамена 1час + 0,3 часа•N, где N – количество обучающихся.

Первый и второй вопросы, проверяющие ИОПК-2.1 приводятся в развернутой форме. Третий вопрос, проверяющий ИОПК-1.2, также приводится в развернутой форме. При его оценке учитываются результаты контрольных работ текущего контроля.

Экзамен в третьем семестре проводится в устной форме по билетам. Билет содержит 2 теоретических вопроса по лекционной части курса и один теоретический по темам практических занятий. Продолжительность экзамена 1час + 0,3 часа•N, где N – количество обучающихся.

Первый и второй вопросы, проверяющие ИОПК-2.1, ИОПК-1.2 приводятся в развернутой форме. Третий вопрос, проверяющий ИОПК-1.2, также приводится в развернутой форме. При его оценке учитываются результаты контрольных работ текущего контроля.

Процедура проверки освоения компетенций и порядок формирования итоговой оценки по результатам освоения дисциплины «Минералогия» описаны в Фондах оценочных средств для данного курса.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=24210
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php? id=24210
- в) Дополнительные материалы по курсу лекций и к практическим занятиям можно найти на старом сайте геолого-географического факультета. Сайт кафедры минералогии и геохимии по ссылке «Студентам. Кафедра минералогии и геохимии» в разделе «Дополнительные материалы».

12. Перечень учебной литературы и ресурсов сети Интернет

- 1. Бетехтин А.Г. Курс минералогии: учебное пособие / А.Г. Бетехтин. М.: КДУ, 2007. 735 с. https://www.geokniga.org/bookfiles/geokniga-kurs-mineralogii-uchebnoe-posobie-agbetehtin-2008.pdf
- 2. Бухарова О.В. Электронный определитель минералов Электронный ресурс: учебнометодический комплекс /О. В. Бухарова, А. Л. Архипов; Том. гос. ун-т, Томск: [ИДО ТГУ], 2012. Электронный ресурс:

http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000461543

- 3. Смирнов С.З., Н.А. Кулик, Ю.Д. Литасов [и др.] Основные понятия минералогии и процессы минералообразования : учебное пособие. Новосибирск : Редакционно-издательский центр НГУ, 2015.— 166 с. http://mineral.nsu.ru/educat/article/24/Processy.pdf
- 4. Минералогия с основами кристаллографии и петрографии. Успенская М.Е., Посухова
- Т.В. (Геологический факультет МГУ). http://geo.web.ru/db/msg.html?mid=1166351
- 5. Каталог минералов. Электронная энциклопедия http://www.catalogmineralov.ru
- 6. Каталог минералов «Мир минералов». http://mirmineralov.ru

а) основная литература:

- 1. Бетехтин А. Г. Курс минералогии. Учебное пособие./ А.Г. Бетехтин; под ред. Б.И. Пирогова, Б. Б. Шкурского. М.: КДУ, 2008. 735 с.: ил.
- 2. Булах А.Г. Минералогия: учебник для студентов учреждений высшего профессионального образования, обучающихся по направлению подготовки "Геология" /А. Г. Булах. М.: Академия, 2011. 278 с.
- 3. Булах А. Г. Общая минералогия: учебник: [для студентов вузов по специальности "Геология"] / А. Г. Булах, В. Г. Кривовичев, А. А. Золотарев. 4-е изд., перераб. и доп. М.: Академия, 2008. 410 с., ил.
- б) дополнительная литература:
- 1. Барабанов В.Ф. Генетическая минералогия. Л.: Недра, 1977. 327 с.
- 2. Батти Х., Принг А. Минералогия для студентов. М.: Мир, 2001. 429 с.
- 3. Берри Л. Мейсон Б., Дитрих Р. Минералогия. Теоретические основы. Описания минералов. Диагностические таблицы. М.: Мир, 1987. 592 с.
- 4. Булах А. Г. Общая минералогия: учебник для университетов по направлению "Геология" / А. Г. Булах ; С. -Петербург. гос. ун-т. 3-е изд. СПб.: Изд-во С.-Петерб. ун-та, 2002. 353 с.: ил.
- 4. Булах А.Г., Золотарев А.А., Кривовичев В.Г. Структура, изоморфизм, формулы, классификация минералов. СПб: Изд-во С. Петерб. ун-та, 2014. 132 с.
- 5. Годовиков A.A. Минералогия. M.: Недра, 1983. 647 c.
- 6. Здорик Т.Б. Минералы. / Т. Б. Здорик, В. И. Сивоглазов. М.: Дрофа, 2008. 63 с.

- 7. Князев Г.Б. Введение в кристаллографию. Учебное пособие. Томск: Томский государственный ун-т, 2000. 219 с.
- 8. Костов И. Минералогия. M.: Мир, 1971. 584 с.
- 9. Лазаренко Е.К. Курс минералогии. М.: Высшая школа, 1971. 607 с.
- 10. Милоновский А.В., Кононов О.В. Минералогия. М.: Изд-во МГУ, 1982. 311 с.
- 11. Ферсман А.Е. Занимательная минералогия. Екатеринбург: Издательство: Урал Л.Т.Д., $2000.-320~\mathrm{c}.$

13. Перечень информационных ресурсов

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

- 1. Лекционная аудитория № 119, оснащенная мультимедиа-проектором.
- 2. Аудитория № 153 Главного корпуса ТГУ, оснащенная мультимедиа-проектором, учебными эталонными коллекциями минералов (800 шт.); учебными рабочими коллекциями минералов (10000 шт.); стереомикроскопами микроскопы МБС-9 (2 шт.).
 - 3. Экспозиции минералогического музея ТГУ, ауд. №142, Главного корпуса ТГУ.
- 4. Для самостоятельной работы используются компьютерные классы кафедры и факультета с доступом к ресурсу Интернет.

15. Информация о разработчиках

Зырянова Луиза Алексеевна, кафедра минералогии и геохимии ТГУ, старший преподаватель.

Программа одобрена на заседании учебно-методической комиссии геолого-географического факультета «24» июня 2022 г., протокол № 6.