Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Факультет инновационных технологий

УТВЕРЖДАЮ:

Декан

Ивиния -С. В. Шидловский

«30» 08

2021 г.

Рабочая программа дисциплины

Материаловедение

по направлению подготовки

27.03.05 Инноватика

Направленность (профиль) подготовки: Управление инновациями в наукоемких технологиях

Форма обучения Очная

Квалификация **Бакалавр**

Год приема **2021**

Код дисциплины в учебном плане: Б1.О.23

СОГЛАСОВАНО:

Руководитель ОПОП

Этор О.В. Вусович

Председатель УМЬ

одо О.В. Вусович

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен анализировать задачи профессиональной деятельности на основе положений, законов и методов в области математики, естественных и технических наук;
- ОПК-2 Способен формулировать задачи профессиональной деятельности на основе знаний профильных разделов математических, технических и естественно-научных дисциплин.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-1.1 Знает основные положения, законы и методы в области естественных, технических наук и математики.
- ИОПК-1.2 Способен выбирать необходимые методы математики, естественных и технических наук для анализа профессиональных задач.
- ИОПК-2.1 Анализирует исходные данные для решения задач в профессиональной деятельности на основе знаний профильных разделов математических, технических и естественно-научных дисциплин (модулей).

2. Задачи освоения дисциплины

- Освоить понятийный аппарат материаловедения и технологий конструкционных материалов, основные методологические принципы конструирования структуры и свойств материалов, а также базовые технологии получения изделий из материалов.
- Научиться применять знания о связи структуры, свойств основных видов материалов об условиях получения материалов и их переработки в изделия для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, зачет

Четвертый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: физика и химия.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 6 з.е., 216 часов, из которых:

- -лекции: 64 ч.
- -лабораторные: 18 ч.
- -практические занятия: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Раздел 1. Технологические основы производства материалов и изделий

Тема 1.1. Металлургическое производство

Металлургическое производство. Чёрная металлургия. Подготовка руд к плавке. Исходные материалы. Выплавка чугуна в доменных печах. Продукты доменного производства. Выплавка стали. Металлургические процессы. Выплавка в мартеновской печи и в кислородных конвертерах. Выплавка в электрических и индукционных печах. Разливка стали.

Тема 1.2. Литейное производство

Основные понятия и их определения. Технологические основы литейного производства. Литейные материалы и их свойства. Литьё в песчаные формы. Специальные способы литья. Обеспечение технологичности литых деталей.

Тема 1.3. Обработка металлов давлением

Физико-механические основы обработки металлов давлением. Особенности технологического процесса и оборудование для обработки давлением. Нагрев металла для обработки давлением и нагревательные устройства. Получение машиностроительных профилей прокаткой, волочением и прессованием. Получение машиностроительных заготовок ковкой, объёмной и листовой штамповкой.

Тема 1.4. Сварочное производство

Сварка металлов. Физико-механические основы образования сварного соединения. Свариваемость. Классификация способов сварки. Сварочные материалы. Термические виды сварки, их физическая сущность, режимы и особенности применения. Термомеханические и механические методы сварки, их физическая сущность и особенности применения. Напряжения и деформации в сварных соединениях. Контроль качества сварных соединений. Нанесение износостойких и жаропрочных покрытий. Наплавка.

Тема 1.5. Технологические основы производства деталей методами размерной обработки

Физико-механические основы обработки конструкционных материалов резанием. Общие сведения и характеристика процессов резания. Движения в процессе резания. Формообразование поверхностей. Классификация металлорежущих станков. Обеспечение показателей качества деталей в процессе резания.

Тема 1.6. Технологические основы производства материалов на полимерной основе

Основные принципы производства полимерных изделий, основные технологии получения пластмасс и изделий из них. Зависимость выбора способа получения от назначения материала, вида наполнителя и вида полимера. Технология получения газонаполненных полимерных материалов. Основные технологии получения композиционных материалов на полимерной основе.

Тема 1.7 Порошковые технологии

Основные способы получения порошков. Порошковые технологии получения изделий из металлов и неметаллов.

Раздел 2. Материаловедение

Тема 2.1 Металлы и сплавы

Строение металлов и сплавов; диаграммы состояния сплавов; термическая обработка; химико-термическая обработка: классификация и обозначение металлов и сплавов; сплавы на основе железа; сплавы цветных металлов; дефекты и механизмы пластической деформации.

Тема 2.2 Полимеры и материалы на их основе

Структура и свойства полимеров. Упаковка молекул полимеров и стеклование. Механические свойства. Природные и синтетические полимеры. Пластмассы и другие материалы на основе полимеров.

Тема 2.3 Керамические материалы и стекло

Типы керамических материалов и стекла. Структура, микроструктура и свойства керамических материалов. Механические свойства и области применения керамики.

Тема 2.4. Материалы со специальными свойствами

Материалы с особыми физическими свойствами; материалы с особыми тепловыми свойствами; материалы с особыми электрическими свойствами; материалы для режущих и измерительных инструментов; материалы для обработки давлением.

No	Томи и практиновких раздала 1	
Π/Π	Темы практических занятий Раздела 1	
1.	Составление схемы технологического процесса получения листового прокатки	
2.	Составление схемы технологического процесса получения сортового проката	
3.	Контроль качества отливок	
4.	Типы сварных соединений и швов. Макроанализ сварных швов	
5.	Обозначения сварных швов на чертежах	
6.	Составления операционной карты контактной сварки арматурной сетки	
7.	Токарная обработка материалов	
8.	Сверлильная обработка материалов	
9.	Фрезерная обработка материалов	

№ п/п	Темы лабораторных занятий Раздела 2
1.	Механические свойства металлов и сплавов и методы их определения
2.	Общая классификация и обозначение металлов и сплавов
3.	Диаграммы состояний
4.	Изучение микроструктуры сталей
5.	Изучение микроструктуры чугунов
6.	Влияние температуры нагрева на структуру и свойства закаленной стали
7.	Классификация и свойства композиционных материалов

Критерии оценивания практических и лабораторных работ

Оценка	Характеристика ответа
Зачтено	Студент знает и понимает конечную цель и задачи работы. Работа должна быть выполнена полностью, правильно оформлена в соответствии с заданием. При необходимости должна содержать правильно оформленную графическую часть.
Не зачтено	Работа выполнена не полностью или неправильно. Студент не понимает цель и задачи работы, допускает грубые ошибки в написании и оформлении отчета, испытывает затруднения в формулировке собственных суждений, неспособен ответить на дополнительные вопросы

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу каждой темы, выполнения практических и лабораторных работ, выполнения домашних заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в первом семестре проводится в форме тестирования в электронном учебном курсе дисциплины в электронном университете «Moodle». Продолжительность тестирования 30 мин при 1 попытке. К зачету допускаются студенты, выполнившие все практические работы и получившие положительный результат тестирования при текущем контроле знаний по каждой теме дисциплины.

Критерии оценивания теста

Оценка	Характеристика ответа
Зачтено	от 80 % правильных ответов
Не зачтено	менее 80 % правильных ответов

Экзамен во втором семестре проводится в устной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность экзамена 1,5 часа.

Первая часть и вторая часть представляет собой теоретические вопросы по Разделам 1 и 2 дисциплины, соответственно, проверяющие ИОПК-1.1. Ответы на теоретические даются в развернутой форме.

Третья часть содержит задания, проверяющие ИОПК-1.2 и ИОПК-2.1, оформленная в виде практических задач. Ответы на вопросы третьей части предполагают решение задач и краткую интерпретацию полученных результатов.

Примерное содержание теоретических вопросов в билете:

- 1. 1) Изменение структуры и свойств металла и сплава при холодной пластической деформации:
- 2) Изменение структуры деформированного металла при нагреве:
- Процессы возврата.
- Рекристаллизация и её особенности. Горячая и холодная деформация.
- 2. Полимеры:
- 1) классификация по форме молекул.
- 2) кристаллическая и аморфная структура полимеров.
- 3) классификация по природе.
- 4) различия между физическими состояниями полимеров.
- 5) Механические свойства полимеров.
- 6) пластмассы
- 3. Металлургическое производство. Чёрная металлургия. Подготовка руд к плавке. Исходные материалы. Выплавка чугуна в доменных печах. Продукты доменного производства.

- 4. Выплавка стали. Металлургические процессы. Выплавка в мартеновской печи и в кислородных конвертерах. Выплавка в электрических и индукционных печах. Разливка стали.
- 5. Литьё:
- 1) сущность литья
- 2) литейные свойства
- 3) виды литья в зависимости от материала литейной формы

Примеры практических заданий:

- 1. Выбрать технологию получения отливки шатуна двигателя внутреннего сгорания из литейного алюминиевого сплава. Выбор обосновать.
- 2. Построить кривые нагрева и охлаждения сплава системы «Fe₃C-цементит» для концентрации углерода 3,4 %. Определить фазовый состав, количества фаз и концентрацию углерода в каждой фазе структуры сплава при температуре сплава 800 град С.
- 3. Расшифровать обозначения сплавов: 09Г2С; Ст3пс; КЧ80-1,5; ХВГ

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

11. Учебно-методическое обеспечение

a) Электронный учебный курс по дисциплине в электронном университете «Moodle» URL: https://moodle.tsu.ru/course/view.php?id=1438 и

URL: https://moodle.tsu.ru/course/view.php?id=3537

- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских / практических занятий по дисциплине.
 - г) Методические указания по проведению лабораторных работ.
 - д) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Материаловедение и технология обработки материалов: Учебное пособие / Третьяков А., Тарасенко Л; М: МГТУ им. Баумана, 2014, 544 с.
- 2. Материаловедение и технология материалов в 2 ч. Часть 1 : учебник для академического бакалавриата / Г. П. Фетисов [и др.] ; под редакцией Г. П. Фетисова, 8-е изд., перераб. и доп. Москва : Издательство Юрайт, 2019. 386 с. (Бакалавр. Академический курс). Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/434496.
 - б) дополнительная литература:
- 1. Конструкционные материалы. Полный курс. Учебное пособие / М. Эшби, Д. Джонс Перевод 3-го английского издания Долгопрудный: Изд. Дом «Интеллект», 2010.-627 с.
- 2. Технология конструкционных материалов: Учебник для студентов машиностроительных специальностей / А.М. Дальский, Т.М. Барсукова, Л.Н. Бухарин и др.; Под ред. А.М. Дальского. Издательство: «Машиностроение», 2004, 448 с.

- в) ресурсы сети Интернет:
- 1. Технологии и материаловедение. Модуль 1: электронное учебное пособие / соствитель Т.Ю. Малеткина, Томский гос. ун-т, обновл. В 2022 г, URL: http://moodle.tsu.ru/course/view.php?id=1438
- 2. Технологии и материаловедение. Модуль 2: электронное учебное пособие / соствитель Т.Ю. Малеткина, Томский гос. ун-т, обновл. В 2022 г, URL: https://moodle.tsu.ru/course/view.php?id=3537.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office Web Apps (Word Excel MS PowerPoint);
 - публично доступные облачные технологии (Google Docs, Яндекс-диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Образовательный процесс по дисциплине обеспечивается в специальных помещениях:

- 1) учебные аудитории для проведения учебных занятий всех видов; групповых и индивидуальных консультаций; проведения текущего контроля и промежуточной аттестации;
 - 2) помещения для самостоятельной работы;
- 3) помещения, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Специальные помещения укомплектованы специализированной мебелью (рабочее место преподавателя, комплекты учебной мебели для обучающихся, маркерная доска и (или) доска флипчарт), оборудованием и техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Лаборатории, оборудованные необходимыми приборами.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Малеткина Татьяна Юрьевна, к. физ.-мат. наук, доцент ТГУ