Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Механико-математический факультет

УТВЕРЖДАЮ:

Декан

механико-математического факультета

Л.В. Гензе

«31» 08

20 2 / r.

Рабочая программа дисциплины

ФИЗИКА

по направлению подготовки 01.03.01Математика, 01.03.03 Механика и математическое моделирование, 02.03.01 Математика и компьютерные науки

Направленность (профиль) подготовки / специализация: «Основы научно-исследовательской деятельности в области математики», «Основы научно-исследовательской деятельности в области механики и математического моделирования», «Основы научно-исследовательской деятельности в области математики и компьютерных наук»

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2021**

Код дисциплины в учебном плане: Б1.О.2.15

СОГЛАСОВАНО: Руководитель ОП

Л.В. Гензе

Председатель УМК

Е.А.Тарасов

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1. Способность накапливать фундаментальные знания, полученные в области математических и (или) естественных наук.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 1.1. Демонстрировать навыки работы с профессиональной литературой по основным естественнонаучным и математическим дисциплинам.

ИОПК 1.2. Демонстрировать навыки выполнения стандартных действий, решения типовых задач с учетом основных понятий и общих закономерностей, формулируемых в рамках базовых математических и естественнонаучных дисциплин.

ИОПК 1.3. Владеть фундаментальными знаниями, полученными в области математических и (или) естественных наук.

2. Задачи освоения дисциплины

- Освоить основные понятия Механики и Электродинамики, основополагающие представления об основных подходах к описанию реальных физических процессов и явлений на классическом и квантовом уровнях.
- Научиться применять основные законы Механики и Электродинамики для решения практических задач профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 6, экзамен.

5. Входные требования для освоения дисциплины

При освоении данной дисциплины необходим высокий уровень знаний таких направлений математики как: линейная алгебра, математический анализ, дифференциальные уравнения и теория вероятности.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 5 з.е., 180 часов, из которых:

- лекции: 32 ч.;
- семинарские занятия: 0 ч.
- практические занятия: 16 ч.;
- лабораторные работы: 32 ч.

в том числе практическая подготовка: 0 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Инерциальные системы координат.

Основное уравнение динамики MT. Теорема о сохранении импульса MT. Инерциальные системы координат.

Тема 2. Консервативные системы.

Работа силы. Понятие мощности. Связь работы с кинетической энергией.

Понятие консервативной системы. Потенциал. Закон сохранения энергии МТ.

Тема 3. Закон сохранения момента импульса.

Момент силы, момент импульса. Теорема о сохранении момента импульса.

Тема 4. Электростатика.

Закон Кулона. Напряженность электростатического поля. Потенциал электростатического поля. Связь потенциала с напряженностью. Проводники в электростатическом поле. Взаимная электроемкость. Конденсатор и его свойства. Поляризация диэлектриков.

Тема 5. Постоянный ток Плотность тока. Закон сохранения электрического заряда. Стационарные токи. Первое правило Кирхгофа. Закон Ома в дифференциальной форме. Закон Ома в интегральной форме. Второе правило Кирхгофа. Закон Джоуля-Ленца в дифференциальной и интегральной формах. Понятие сторонних сил.

Тема 6. Магнитное поле.

Закон Био-Савара-Лапласа. Сила Ампера. Движение заряда в магнитном поле. Сила Лоренца. Индукция прямого проводника. Закон полного тока. Уравнение Максвелла для стационарного магнитного поля. Магнитное поле в магнетиках. Закон полного тока в магнетиках. Магнитное поле на границе двух сред.

Тема 7. Явление электромагнитной индукции.

Явление электромагнитной индукции. Закон электромагнитной индукции. Явление самоиндукции. Ток при размыкании и замыкании цепи с индуктивностью.

Тема 8. Переменный ток.

Переменный ток, протекающий через индуктивность. Переменный ток, протекающий через емкость. Цепь переменного тока, содержащая емкость, индуктивность и активное сопротивление. Свободные колебания. Вынужденные колебания в цепи переменного тока, содержащей емкость, индуктивность и активное сопротивление. Резонанс.

Тема 9. Теория электромагнитных волн.

Обобщение законов элекро- и магнитостатики на случай переменных полей. Уравнения Максвелла. Волновое уравнение. Решение в виде плоской векторной волны. Свойства плоской векторной волны. Вектор Пойнтинга.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в шестом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух вопросов. Продолжительность экзамена 1,5 часа.

Структура экзамена соответствует компетентностной структуре дисциплины.

Первая часть представляет собой выполнение шести лабораторных работ по Механике и шести лабораторных работ по Электродинамике в течение семестра, проверяющих ОПК-1. Набор лабораторных работ индивидуален для каждого студента, осуществляется выбором из списка лабораторных работ.

Список лабораторных работ по Механике.

- 1. Точное взвешивание.
- 2. Гидростатическое-взвешивание.
- 3. Определение модуля Юнга из растяжения.
- 4. Определение модуля Юнга из изгиба.
- 5. Определение ускорения силы тяжести с помощью оборотного маятника.

- 6. Свободное падение тел в поле тяготения Земли.
- 7. Проверка основного закона динамики вращательного движения абсолютно твердого тела.
 - 8. Определение ускорения силы тяжести маятником Бесселя.
 - 9. Определение коэффициента внутреннего трения жидкости по методу Стокса.
 - 10. Определение момента инерции тела с помощью колебаний.
 - 11. Определение момента инерции тела методом трифилярного подвеса.
 - 12. Измерение ускорения свободного падения на машине Атвуда.
 - 13. Маятник Максвелла.
- 14. Определение ускорения силы тяжести при помощи математического и оборотного маятников.
 - 15. Определение коэффициента трения качения методом наклонного маятника.

Список лабораторных работ по Электродинамике.

- 1. Изучение электростатического поля.
- 2. Изучение диэлектрической проницаемости анизотропного диэлектрика.
- 3. Изучение электрических свойств сегнетоэлектриков.
- 4. Измерение ЭДС методом компенсации.
- 5. Определение температурной зависимости сопротивления металлов и полупроводников.
 - 6. Эффект Холла.
 - 7. Определение работы выхода электронов из металла.
 - 8. Изучение контактных явлений в металлах. Градуирование термопары.
 - 9. Определение неизвестных сопротивлений с помощью моста Уитстона.
 - 10. Определение отношения заряда электрона к его массе методом магнетрона.
- 11. Определение отношения заряда электрона к его массе методом фокусировки в магнитном поле.
- 12. Изучение баллистического гальванометра и определение с его помощью неизвестной емкости.
 - 13. Определение точки Кюри для ферромагнетиков.
 - 14. Изучение гистерезиса ферромагнитных материалов.
 - 15. Изучение магнитного поля соленоида с помощью датчика Холла.
 - 16. Изучение процессов заряда и разряда конденсатора.
- 17. Измерение индуктивности соленоида с использованием универсальной установки Кобра-3.
- 18. Изучение эффекта Холла в германиевом проводнике с использованием универсальной установки Кобра-3.
 - 19. Изучение явления резонанса напряжений.
 - 20. Изучение явления резонанса токов.
 - 21. Изучение процессов заряда и разряда конденсатора.
 - 22. Исследование затухающих колебаний в колебательном контуре.
 - 23. Изучение релаксационных колебаний.
 - 24. Изучение электронного осциллографа.
 - 25. Изучение электрических колебаний в связанных контурах.

Вторая часть состоит из решения в течение семестра физических задач по Механике и Электродинамике, проверяющих ИОПК 1.1. и ИОПК 1.2.

Тематика практических занятий

- 1 Кинематика материальной точки. Динамика материальной точки. Закон сохранения импульса.
- 2 Работа и энергия. Закон сохранения механической энергии.

- 3 Уравнение вращательного движения твердого тела. Закон сохранения момента импульса. Момент инерции.
- 4 Колебательное движение. Упругие волны. Математический и физический маятники.
- 5 Закон Кулона. Напряженность и потенциал электрического поля.
- 6 Проводники и диэлектрики. Теорема Гаусса. Закон Ома. Законы постоянного тока
- 7 Магнитное поле в вакууме. Закон Био-Савара-Лапласа.
- 8 Сила Лоренца. Сила Ампера.
- 9 Магнитное поле в веществе. Уравнения Максвелла.

Примеры физических задач:

Задача 1. Частица движется в плоскости ху со скоростью $\vec{v} = A\vec{i} + B\vec{j}$, где A и B - постоянные. В начальный момент времени координаты частицы $x_0 = y_0 = 0$. Найти зависимость от времени радиуса-вектора \vec{r} частицы и уравнение траектории у(x).

Задача 2. На горизонтальную ось насажены маховик и легкий шкив радиусом R=5 см. На шкив намотан шнур, к которому привязан груз массой m=0,4 кг. Опускаясь равноускоренно, груз прошел путь s=1,8 м за время t=3 с. Определить момент инерции I маховика. Массу шкива считать пренебрежимо малой.

Задача 3. Человек стоит на скамье Жуковского и ловит рукой мяч массой m=0,4 кг, летящий в горизонтальном направлении со скоростью v=20 м/с. Траектория мяча проходит на расстоянии r=0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью ω начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции человека и скамьи I=6 кг·м²?

Задача 4. Два бесконечно длинных коаксиальных цилиндра с радиусами r_1 =10 мм и r_2 =20 мм заряжены одноименными зарядами, причем поверхностная плотность зарядов на внешнем цилиндре σ 2=6.66 нКл/м², а на внутреннем σ 1=3.33 нКл/м². Найти разность потенциалов $\Delta \phi$ между цилиндрами.

Задача 5. Тонкое кольцо радиусом R=10см, равномерно заряженное зарядом q=3.2 нКл, и проводящая сфера расположены так, что центр сферы находится на оси кольца на расстоянии l=7.5см от плоскости кольца. Найти потенциал ф сферы.

Задача 6. Элемент, ЭДС которого E=1.1 В и внутреннее сопротивление r=1 Ом, замкнут на внешнее сопротивление R=9 Ом. Найти: а) силу тока в цепи I; б) падение потенциала во внешней цепи U1; в) падение потенциала внутри элемента U2; г) с каким КПД п работает источник ЭДС?.

Задача 7. В соленоид длиной I=500 мм, имеющий N=100 витков, введен ферромагнитный сердечник. Площадь поперечного сечения соленоида S=8см2. При прохождении по виткам соленоида тока I=0.25 А магнитная проницаемость ферромагнетика $\mu=8000$. Определить магнитный поток Φ через сечение соленоида.

Задача 8. Две бесконечные параллельные плоскости находятся на расстоянии d=0,5 см друг от друга. На плоскостях равномерно распределены заряды с поверхностными плотностями σ 1 = 0,2 мкКл/м2 и σ 2 = -0,3 мкКл/м2. Определить разность потенциалов U между плоскостями.

Третья часть предполагает ответ студента на два теоретических вопроса экзаменационного билета, проверяющих ИОПК 1.3.

Перечень теоретических вопросов.

- 1 Что называется материальной точкой?
- 2 Что называется законом движения и что такое траектория?
- 3 Что такое радиус-вектор, скорость и ускорение?
- 4 Что такое тангенциальное и центростремительное ускорения, радиус кривизны траектории?
- 5 Понятия угловой скорости и углового ускорения.
- 6 Определение импульса и силы.
- 7 Понятие изолированной системы.
- 8 Сформулируйте закон сохранения импульса. Упругий и неупругий удар.
- 9 Какое свойство тела называется инерцией?
- 10 Какое условие необходимо для движения тела по инерции?
- 11 Виды механической энергии. Работа и мощность.
- 12 Потенциальная энергия. Консервативные силы.
- 13 Что называется абсолютно твердым телом?
- 14 Момент инерции материальной точки и моментом инерции твердого тела.
- 15 Уравнение вращательного движения твердого тела.
- 16 Момент импульса. Закон сохранения момента импульса.
- 17 Подход Лагранжа и подход Эйлера.
- 18 Колебания. Математический и физический маятники. Затухающие и вынужденные колебания. Резонанс.
- 19 Что называется волной? Дайте определение поперечной и продольной волны. Что называется длиной волны? Может ли звук распространятся в вакууме?
- 20 Сформулируйте электрического закон сохранения заряда. Закон Кулона. Напряженность электрического поля. Каким потенциал соотношением связанны между собой напряженность И потенциал электрического поля?
- 21 Сформулируйте теорему Остроградского-Гаусса. Каково ее практическое применение?
- 22 Чему равна работа по перемещению заряда вдоль эквипотенциальной поверхности? Емкость и конденсатор. Что характеризует относительная диэлектрическая проницаемость? Диэлектрики, проводники и сегнетоэлектрики.
- 23 Что называется силой тока? Что называется электродвижущей силой генератора? Законы Киргофа. Закон Ома. Зависимость проводимости вещества от температуры.
- 24 Что называется магнитным полем? Какую форму и ориентацию имеют линии магнитной индукции поля, создаваемого током в прямолинейном проводнике? Магнитное поле контура с током.
- 25 Сформулируйте закон Ампера. Что характеризует относительная магнитная проницаемость среды?
- 26 Вектор напряженности магнитного поля и вектор магнитной индукции. Что называется точкой Кюри?
- 27 Движение заряженной частицы в магнитном поле.
- 28 Э.Д.С. индукции и Э.Д.С. самоиндукции. Индуктивность. Взаимная индуктивность двух контуров. От чего и как зависит индуктивное сопротивление соленоида? Что может служить источником переменного электромагнитного поля?

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «Отлично» выставляется в случае, если студент выполнил все лабораторные работы, сдал все задачи и правильно ответил на все вопросы на экзамене.

Оценка «Хорошо» выставляется в случае, если студент выполнил все лабораторные работы, сдал все задачи и ответил на все вопросы на экзамене с несущественными ошибками.

Оценка «Удовлетворительно» выставляется в случае, если студент выполнил все лабораторные работы, сдал все задачи и ответил на все вопросы на экзамене, но лишь частично.

Оценка «Неудовлетворительно» выставляется в случае, если студент выполнил все лабораторные работы, сдал все задачи, но не ответил на вопросы на экзамене.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=6164
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских / практических занятий по дисциплине.
 - г) Методические указания по проведению лабораторных работ.
 - д) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1 Ландау Л.Д., Лифшиц Е.М. Теоретическая физика Т.1-10 . М.: Физматлит, 1958-2007.
- 2 Сивухин Д.В. Общий курс физики Т. 1-2: [учебное пособие для физических специальностей вузов : в 5 т.] / Д. В. Сивухин М.: Изд-во Физматлит (МИФИ), 2005. 560 с.
- 3 Савельев И. В. Курс общей физики: Учебное пособие для втузов: В 5 кн., М. : Наука. Физматлит, 1998.
- 4 Савельев И. В. Курс общей физики: Учебное пособие для втузов: В 5 кн., М. : Москва : Астрель : АСТ, 2002- 2006г.
- 5 Савельев И. В. Курс общей физики: Учебное пособие для втузов: В 4 кн., М.: Москва: Москва: Кнорус, 2009-2012г.
- б) дополнительная литература:
- 1 Савельев И. В. Курс общей физики в 3 томах. М.: Наука. Главная редакция физико-математической литературы, 1971, 1973, 1979, 1988
- 2 Иродов Д.В. Задачи по общей физике. M. : Hayкa, 1979. 319 c.
- в) ресурсы сети Интернет:
- 1 Электронная библиотека (репозиторий) НБ ТГУ [Электронный ресурс] / НИ ТГУ, Научная библиотека ТГУ. Электрон. дан. Томск, 2011- . URL: http://vital.lib.tsu.ru/vital/access/manager/Index
- 2 Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]. Электрон. дан. М., 2000- . URL: http://elibrary.ru/defaultx.asp/

13. Перечень информационных технологий

а) лицензионное и свободно распространяемое программное обеспечение:

- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 36C IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории, оборудованные учебными установками для проведения лабораторных работ по физике.

15. Информация о разработчиках

Кистенев Юрий Владимирович – доктор физико-математических наук, профессор кафедры общей и экспериментальной физики.