Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

Рабочая программа дисциплины

Алгебра и геометрия

по направлению подготовки

02.03.03 Математическое обеспечение и администрирование информационных систем

Направленность (профиль) подготовки: **DevOps-инженерия в администрировании инфраструктуры ИТ-разработки**

Форма обучения Очная

Квалификация **Бакалавр**

Год приема 2023

Код дисциплины в учебном плане: Б1.О.02.02

СОГЛАСОВАНО:

Рукомитель ОП

С.П. Сущенко

Пре седатель УМК

С.П. Сущенко

Томск - 2023

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 - способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-1.1. Применяет фундаментальные знания, полученные в области математических и (или) естественных наук.
- ИОПК-1.2. Использует фундаментальные знания, полученные в области математических и (или) естественных наук в профессиональной деятельности.

ИОПК-1.3. Обладает необходимыми знаниями для исследования информационных систем и их компонент.

2. Задачи освоения дисциплины

- Обучиться в естественной полноте и целостности методам линейной алгебры и аналитической геометрии.
- Научиться применять математические идеи и методы для анализа и моделирования сложных систем, процессов и явлений для поиска оптимальных решений, и выбора наилучших способов реализации.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Алгебра и геометрия» относится к обязательной части блока 1 «Дисциплины», входит в модуль «Математика».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 1, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины необходимо знать базовый математический аппарат школьных курсов «Алгебра и основы математического анализа» и «Геометрия».

Пререквизиты дисциплины: базируется на знаниях, полученных в рамках школьных курсов «Алгебра и основы математического анализа» и «Геометрия».

Постреквизиты дисциплины: математический анализ, теория вероятностей, методы оптимизации.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 6 з.е., 216 часов, из которых:

- лекции: 48 ч.;
- семинарские занятия: 0 ч.
- практические занятия: 64 ч.;
- лабораторные работы: 0 ч.
 - в том числе практическая подготовка: 0 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Линейная алгебра.

Матрицы и определители. Действия над матрицами. Обратная матрица. Ранг матрицы. Системы линейных алгебраических уравнений.

Тема 2. Векторная алгебра.

Линейные операции над векторами. Разложение вектора по базису. Скалярное, векторное, смешанное произведения векторов и их геометрические приложения.

Тема 3. Аналитическая геометрия.

Прямая на плоскости. Плоскость в пространстве. Прямая в пространстве. Уравнения линий и поверхностей первого и второго порядков.

Тема 4. Линейные пространства.

Линейные преобразования.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Теоретические и практические результаты формируются компетенциями ИОПК-1.1; ИОПК-1.2; ИОПК-1.3 и результатами обучения:

№	Этапы формирования компетенций (разделы дисциплины)	Код и наименование результатов обучения
1.	Раздел 1. Линейная алгебра	OP-1.1.1, OP -1.1.2
2.	Раздел 2. Векторная алгебра	OP-1.1.1, OP -1.1.2
3.	Раздел 3. Аналитическая геометрия	OP-1.2.1, OP-1.3.1;.OP-1.3.2
4.	Раздел 4. Линейные пространства	OP-1.2.1, OP-1.3.1;.OP-1.3.2

Форма промежуточной аттестации – экзамен. Состоит из выполнения двух теоретических коллоквиумов и трех письменных контрольных работ.

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка за промежуточную аттестацию по дисциплине выставляется как среднеарифметическая по итогам текущего контроля успеваемости и семестрового экзамена. При условии сдачи мероприятий контрольных точек 1-5 на положительную оценку.

Для оценки промежуточной аттестации используется традиционная шкала оценивания.

Период текущей	Виды	Влияние оценки текущей
аттестации	текущей/промежуточной	аттестации на оценку
	аттестации	промежуточной аттестации
Контрольная точка 1	Контрольная работа №1	Оценка должна быть не менее 3, иначе
(8 неделя семестра)		промежуточная аттестация
		оценивается на 2
Контрольная точка 2	Коллоквиум 1	Оценка должна быть не менее 3, иначе
(9 неделя семестра)		промежуточная аттестация
		оценивается на 2

Контрольная точка 3	Контрольная работа №2	Оценка должна быть не менее 3, иначе
(12 неделя семестра)		промежуточная аттестация
		оценивается на 2
Контрольная точка 4	Контрольная работа №3	Оценка должна быть не менее 3, иначе
(15 неделя семестра)		промежуточная аттестация
		оценивается на 2
Контрольная точка 5	Коллоквиум 2	Оценка должна быть не менее 3, иначе
(16 неделя семестра)		промежуточная аттестация
		оценивается на 2
Сессия	Экзамен	По выбору, для улучшения текущей
(20-21 недели		оценки
семестра)		

Критерии оценивания контрольных работ:

Процент правильно выполненных	Оценка
заданий	
85-100	5
70-84	4
55-69	3
Менее 55	2

11. Учебно-методическое обеспечение

Виды занятий - лекции, практические занятия

Форма промежуточной аттестации - экзамен. Состоит из выполнения двух теоретических коллоквиумов и четырех письменных контрольных работ.

Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций, и методические материалы, определяющие процедуры оценивания результатов обучения, приведены в Приложении 1 к рабочей программе «Фонд оценочных средств».

Типовые контрольные задания или иные материалы, необходимые для текущей аттестации, и методические материалы, определяющие процедуры оценивания результатов текущей аттестации, приведены в Приложении 2 к рабочей программе «Примерные оценочные средства текущей аттестации».

<u>Основным методом</u> изучения тем, вынесенных в лекционный курс, является информационно-объяснительный метод с элементами проблемных ситуаций и заданий студентам. На практических занятиях основным является поисковый метод, связанный с решением различных типов задач.

<u>Средствами обучения</u> является базовый учебник, дополнительные пособия для организации самостоятельной работы студентов, демонстрационные материалы, компьютерные обучающие программы, сборники задач.

<u>Приемами организации</u> учебно-познавательной деятельности студентов являются приемы, направленные на осмысление и углубление предлагаемого содержания и приемы, направленные на развитие аналитико-поисковой и исследовательской деятельности.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Лившиц К.И. Линейная алгебра и аналитическая геометрия Ч.1. [учебник для вузов по направлению ВПО 010400 "Прикладная математика и информатика"]. Томск: НТЛ, 2011. 247с.

- Клетеник Д.В. Сборник задач по аналитической геометрии. Санкт-Петербург: Лань, 2010 222с.
- Ильин В.И., Позняк Э.Г., Линейная алгебра [учебник для студентов физических специальностей и специальности "Прикладная математика и информатика". Москва: Физматлит, 2010.
- Александров П.С. Лекции по аналитической геометрии: пополненные необходимыми сведениями из алгебры с приложением собрания задач, снабженных решениями, составленного А. С. Пархоменко, 2016.
 - Курош А.Г. Курс высшей алгебры. Санкт-Петербург: Лань, 2013.
- Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. Санкт-Петербург: Лань, 2015.
- Фаддеев Д.К., Соминский И.С. Задачи по высшей алгебре. Санкт-Петербург: Лань, 2008.

б) ресурсы сети Интернет:

— Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры: учебник: [для студентов, изучающих курсы математики в классических университетах, а также технических вузах] /Д. В. Беклемишев. — Санкт-Петербург: Лань, 2015—244с.

http://e.lanbook.com/books/element.php?pl1_id=58162

– Привалов И. И. Аналитическая геометрия : учебник /И. И. Привалов–Санкт-Петербург: Лань , 2010–299с.

http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=321

– Клетеник Д. В. Сборник задач по аналитической геометрии /Д. В. Клетеник ; под ред. Н. В. Ефимова Санкт-Петербург: Лань , 2010–222с.

http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=2044

— Алгебра и геометрия Электронный ресурс Ч. 1 : учебное пособие /Росошек С. К. ; Том. гос. ун-т

http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000391407

- http://search.epnet.com EBSCO Универсальная база данных зарубежных полнотекстовых научных журналов по всем областям знаний.
 - http://exponenta.ru/educat/class/class.asp (Internet-класс по высшей математике).
 - http://mathelp.spb.ru/la.htm (лекции по линейной алгебре).
 - http://www.mathem.h1.ru/ (математикаOn-Line)

13. Перечень информационных технологий

Лицензионное и свободно распространяемое программное обеспечение:

– MS Windows; MS Office.

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Специальные технические средства (проектор, компьютер и т.д.) требуются для демонстрации материала в рамках изучаемых разделов, проведения защиты проектов в конце семестра. Вся основная и дополнительная литература, необходимая для самостоятельной работы и подготовки к экзамену, имеется в научной библиотеке ТГУ.

15. Информация о разработчиках

Моисеева Светлана Петровна, доктор физико-математических, профессор, и.о. зав. кафедрой теории вероятностей и математической статистики НИ Томского государственного университета.

Пауль Светлана Владимировна, кандидат физико-математических наук, доцент кафедры теории вероятностей и математической статистики ТГУ;

Шкленник Мария Александровна, кандидат физико-математических наук, доцент кафедры теории вероятностей и математической статистики ТГУ;

Полин Евгений Павлович, ассистент кафедры теории вероятностей и математической статистики ТГУ.