Министерство науки и высшего образования Российской федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Рабочая программа дисциплины «Физика»

Направление подготовки **05.03.06** Экология и природопользование

Профиль подготовки **Природопользование**

Квалификация (степень) выпускника **Бакалавр**

> Форма обучения **Очная**

Одобрено кафедрой природопользования ГГФ ТГУ

Протокол № 65 от «13» мая 2020 г.

Зав. кафедрой, доцент

Эткороз Т. В. Королева

Рекомендовано методическим советом

геолого-географического факультета

Председатель методической комиссии

по направлению «Экология и природопользование», доцент кафедры географии

М. А. Каширо

«_26 »_ июня_ 2020 г.

Рабочая программа по дисциплине «Физика» составлена на основе требований Федерального государственного образовательного стандарта высшего образования по направлению подготовки 05.03.06 Экология и природопользование, квалификация «бакалавр» (приказ Минобрнауки России № 998 от 11 августа 2016 г.), с изменениями, внесенными приказом Министерства образования и науки Российской Федерации от 13 июля 2017 г. N 653.

Общий объем дисциплины: 3 зачетных единицы, 108 часов. Из них контактная работа 64 часа, самостоятельная работа студентов — 44 часов.

Зачет в третьем семестре.

Автор:

Борисов Алексей Владимирович – кандидат физико-математических наук, доцент кафедры общей и экспериментальной физики

Репензент:

Алексей Николай Александрович – кандидат физико-математических наук, доцент кафедры общей и экспериментальной физики

1. Код и наименование дисциплины

Б.1.Б.9 Физика (первая часть)

2. Место дисциплины в структуре ООП бакалавриата

Первая часть дисциплины («Физика») является компонентом базовой части учебного плана подготовки бакалавра по направлению подготовки 05.03.06 Экология и природопользование

Целью освоения дисциплины является - сформировать у студентов систему фундаментальных знаний, необходимых для подготовки бакалавров, способных к эффективному решению задач геологии, основанных на различных физических методах.

3. Год и семестр обучения

Второй год; третий семестр

4. Входные требования для освоения дисциплины (модуля), предварительные условия (если есть).

При освоении данной дисциплины необходим высокий уровень знаний таких направлений математики как: линейная алгебра, математический анализ, дифференциальные уравнения и теория вероятности.

Знание «Физики» позволит в дальнейшем освоить дисциплины «Геофизика», «Структурный анализ», «Структурное изучение магматических тел», «Гидрогеология», «Петрография».

5. Общая трудоемкость дисциплины составляет 3 зачетных единиц, 108 часов, из которых 68 часов составляет контактная работа обучающегося с преподавателем (32) часов — занятия лекционного типа, 10 часов — лабораторные занятия и 34 часов — практические занятия); 44 часа составляет самостоятельная работа обучающегося.

6. Формат обучения – очный.

7. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Формируемые компетенции	Планируемые результаты обучения по дисциплине (модулю)
ОПК-2, I уровень Владение базовыми знаниями фундаментальных разделов физики, химии и биологии в объёме, необходимом для освоения физических, химических и биологических основ в экологии и природопользовании; методами химического анализа, знаниями о современных динамических процессах в природе и техносфере о состоянии геосфер Земли, экологии и эволюции биосферы, глобальных экологических проблемах, методами отбора и анализа геологических и биологических проб, а также навыками идентификации и описания биологического	32 (ОПК – 3) – I Знать основные положения естественных наук У2 (ОПК-3) – I Уметь применять основные законы естественных наук в практической и познавательной деятельности

разнообразия, его оценки современными методами количественной обработки информации	
	31 (ОПК-3) – II Знать: область применения базовых знаний математики и естественных наук в своей профессиональной деятельностя

8. Структура и содержание дисциплины «Физика» Общая трудоемкость дисциплины составляет 3 зачетные единиц, 108 часов.

8.1. Структура преподавания дисциплины

			Контан	стная рабо	та (час.)	Самостоят
№ п/п	Наименование разделов и тем	Всего (час.)	Лекции	Практиче ские занятия	Лаборато рные работы	ельная работа (час.)
1	Кинематика	17	8	4		5
2	Динамика материальной точки, законы сохранения импульс и энергии	23	10	4	4	5
3	Вращательное движение твердого тела	21	8	4	4	5
4	Движение жидкости	9	4	2	2	1
5	Колебания и волны	10	4	2	2	2
6	Основные понятия молекулярной физики	8	4		2	2
7	Первое начало термодинамики	4	2			2
8	Статистический и термодинамический подход	8	4		2	2
9	Второе и третье начало термодинамики	5	4			1
10	Изменение агрегатного состояния вещества	3	2			1
	Итого в первом семестре	108	50	16	16	26

8.2. Содержание разделов дисциплины

№	Тема	Содержание
1	Кинематика	Скалярное и векторное произведение векторов. Системы отсчёта. Базовые понятия кинематики (материальная точка, радиус-вектор, скорость, ускорение, закон движения, траектория и т.д.).
2	Динамика материальной точки, законы сохранения импульс и энергии	Законы Ньютона. Понятие об однородности пространства и времени. Масса, импульс, энергия. Законы сохранения импульса и энергии. Инерциальные и неинерциальные системы отсчета. Консервативные силы. Границы применимости классической механики. Понятие о квантовой механике и теории относительности Эйнштейна.
3	Вращательное движение твердого тела	Определение твердого тела. Момент импульса, момент силы, момент инерции. Уравнение вращательного движения твердого тела. Моменты инерции некоторых тел. Закон сохранения момента импульса. Кинетическая энергия вращающегося твердого тела.

4	Движение	Основные понятия. Уравнение неразрывности. Подход
-	жидкости	Основные понятия. Уравнение неразрывности. Подход Эйлера и подход Лагранжа.
5	Колебания и волны	Определение колебания и понятие волны. Гармонические
		колебания (гармонический осциллятор, математический и
		физический маятники). Затухающие колебания.
		Вынужденные колебания. Волновое уравнение. Уравнение
		волны. Интенсивность волны.
6	Основные понятия	Количество теплоты и температура. Основные
	молекулярной	макроскопические характеристики вещества (давление,
	физики	объем и т.д.). Идеальный газ.
7	Первое начало	Количество степеней свободы. Теплоемкость. Внутренняя
	термодинамики	энергия. Первое начало термодинамики. Работа,
		совершаемая термодинамической системой при изменении
		объема. Изохорический, изобарический, изотермический,
		адиабатический и политропический процессы.
8	Статистический и	Понятия макроскопического и микроскопического
	термодинамический	состояний. Статистический вес. Распределение Максвелла.
	подход	Распределение Больцмана. Энтропия. Статистический
	_	емысл энтропии.
9	Второе и третье	Цикл Карно. Второе начало термодинамики. Третье начало
	начало	термодинамики Энтропия. Энтропия идеального газа.
10	термодинамики	Длина свободного пробега
10	Изменение	Понятие о фазовых превращениях и диаграмме состояний
	агрегатного	вещества. Газ Ван-дер-Ваальса. Критическая температура.
	состояния вещества	Сжатие газов. Испарение, конденсация возгонка,
		сублимация, кипение, плавление, кристаллизация.
11	Электростатика	Представления о плазмы и конденсате Бозе-Эйнштейна.
11	Электростатика	Электрический заряд. Сила Кулона. Электрическое поле и его характеристики (напряженность, потенциал). Диполь.
		Тоомого
		диэлектрическая проницаемость. Проводники, диэлектрики
		и сигнетоэлектрики. Электроемкость и конденсатор. Энергия
		заряженного проводника. Электрическое поле в веществе.
12	Постоянный	Понятие силы тока. Напряжение. Сопротивление. Закон
	электрический ток	Ома. Работа и мощность тока. Правила Кирхгофа.
		Электродвижущая сила.
13	Электромагнетизм	Напряженность магнитного поля. Формула Ампера. Закон
	.00	Био-Савара-Лапласа. Диамагнетики, парамагнетики и
		ферромагнетики. Вектор магнитной индукции. Поток
		вектора магнитной индукции. Движение заряженных частиц
		в электрическом и магнитном полях.
14	Переменный ток и	Электромагнитная индукция. Закон Фарадея. Токи Фуко.
	самоиндукция	Взаимная индукция и самоиндукция. Энергия магнитного
		поля. Обобщенный закон Ома. Уравнения Максвелла в
1.5		дифференциальной и интегральной формах
15	Свет и	Понятие света. Связь оптических и электромагнитных
	электромагнитная	свойств вещества. Волновая и корпускулярная природа
	волна.	света. Отражение и преломление света. Полное внутреннее
		отражение. Законы геометрической оптики. Показатель
16	Интерференция	преломления.
10	света	Интерференция света. Когерентность. Монохроматический
	CDCIA	свет. Интерференционная картина.

17	Дифракция света.	Понятие дифракции. Принцип Гюйгенса-Френеля.
		Дифракция Френеля. Дифракция Фраунгофера.
		Дифракционная решетка.
18	Поляризация света	Естественный и поляризованный свет. Закон Малюса.
		Двойное лучепреломление. Поляризация при двойном
		лучепреломлении. Оптическая ось кристалла.
19	Дисперсия света	Определение дисперсии света. Понятие дисперсии с точки
		знания теории вероятности. Спектр. Радуга.
20	Квантовые	Тепловое излучение. Абсолютно черное тело. Квантовый
	свойства света	характер излучения. Формула Планка.
21	Элементы атомной	Строение атома. Дискретность энергетических состояний
	физики	атома. Постулаты Бора. Водородоподобная модель атома.
		Фотоэффект. Масса и импульс фотона. Эффект Комптона.
22	Элементы ядерной	Общие сведения об атомных ядрах. Изотопы.
	физики	Радиоактивность. Альфа-, бета- и гамма-излучения. Ядерные
		реакции. Энергия связи. Сильное и слабое взаимодействие.

9. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине и методические указания для обучающихся по освоению дисциплины.

9.1 Виды самостоятельной работы и формы текущего контроля

Базовая часть предмета изложена в лекциях, которые читаются с использованием демонстрационных экспериментов. Основные и наиболее важные эксперименты представлены в лабораторных работах. В ходе выполнения лабораторных работ студенты самостоятельно проводят соответствующие эксперименты. На практических занятиях используются информационные технологии для более наглядного и эффективного изучения предмета.

9.1.1 Тематика практических занятий

- 1. Кинематика материальной точки. Динамика материальной точки. Закон сохранения импульса.
- 2. Работа и энергия. Закон сохранения механической энергии.
- 3. Уравнение вращательного движения твердого тела. Закон сохранения момента импульса. Момент инерции.
- 4. Колебательное движение. Упругие волны. Математический и физический маятники.
- 5. Уравнение состояния идеального газа. Процессы в газах. Первое начало термодинамики. Второе начало термодинамики.
- 6. Закон Кулона. Напряженность и потенциал электрического поля. Проводники и диэлектрики. Теорема Гаусса. Закон Ома. Законы постоянного тока.
- 7. Магнитное поле в вакууме. Закон Био-Савара-Лапласа. Сила Лоренца. Теорема о циркуляции для магнитных полей. Магнитное поле в веществе. Уравнения Максвелла.
- 8. Интерференция, дифракция, дисперсия и поляризация света.

9.1.2 Тематика лабораторных работ

- 1. Определение модуля Юнга из изгиба
- 2. Изучение законов сохранения на примере центрального удара шаров
- 3. Проверка основного закона динамики из вращательного движения на крестообразном мятнике Обербека
- 4. Определение отношения удельных теплоемкостей воздуха C_p/C_v методом Клемана-Дезорма
- 5. Изучение закона Максвелла распределения молекул по скоростям

- 6. Изучение электростатического поля
- 7. Изучение процессов заряда и разряда конденсатора
- 8. Изучение явления резонанса напряжений
- 9. Определение длины световой волны при помощи бипризмы Френеля
- 10. Наблюдение дифракции Фраунгофера на дифракционной решетке в свете излучения ртутной лампы
- 11. Определение постоянной Ридберга
- 12. Зависимость фототока от длины волны
- 13. Зависимость фототока от интенсивности света
- 14. Статистические закономерности радиоактивного распада

9.1.3 Подготовка к устному опросу

Контрольные вопросы для проведения текущего контроля по итогам освоения разделов дисциплины, а также для контроля самостоятельной работы обучающегося по отдельным разделам дисциплины

- 1. Векторное и скалярное произведение векторов.
- 2. Что называется материальной точкой?
- 3. Закон движения и траектория.
- 4. Дайте определение радиус-вектору, скорости и ускорению.
- 5. Тангенциальное и центростремительное ускорения, радиус кривизны траектории?
- 6. Понятия угловой скорости и углового ускорения.
- 7. Определение импульса и силы.
- 8. Понятие изолированной системы.
- 9. Сформулируйте закон сохранения импульса. Упругий и неупругий удар.
- 10. Какое свойство тела называется инерцией?
- 11. Какое условие необходимо для движения тела по инерции?
- 12. Закон Гука. Виды деформации тела.
- 13. Сформулируйте закон всемирного тяготения.
- 14. Принцип относительности Галилея. Инерциальные и неинерциальные системы отсчета.
- 15. Виды механической энергии. Работа и мощность.
- 16. Потенциальная энергия. Консервативные силы.
- 17. Что называется абсолютно твердым телом?
- 18. Момент инерции материальной точки и моментом инерции твердого тела.
- 19. Уравнение вращательного движения твердого тела.
- 20. Момент импульса. Закон сохранения момента импульса.
- 21. Что называется идеальной жидкостью? Трубка тока.
- 22. Сформулируйте и запишите математическое уравнение неразрывности струи.
- 23. Подход Лагранжа и подход Эйлера.
- 24. Гармонические колебания. Математический и физический маятники. Что называется амплитудой и фазой колебания? Период малых колебаний.
- 25. Затухающие и вынужденные колебания. Резонанс.
- 26. Что называется волной? Дайте определение поперечной и продольной волны. Что называется длиной волны? Может ли звук распространятся в вакууме?
- 27. Потенциальная энергия взаимодействия молекул.
- 28. Каков характер зависимости сил межмолекулярного взаимодействия от расстояния между молекулами? Чем обусловлено Броуновское движение?
- 29. Что называется удельной теплоемкостью вещества? Как влияют скорости хаотического движения молекул, составляющих тело, на его температуру?
- 30. Состояние идеального газа. Уравнение идеального газа.
- 31. Какими законами описываются изотермические и изобарические процессы?

- 32. Молярная газовая постоянная, постоянная Больцмана и число Авогадро.
- 33. Термодинамическая температура. Абсолютный ноль температур.
- 34. Что называется числом степеней свободы тела?
- 35. Распределение Максвелла и его характеристики.
- 36. Что называется длиной свободного пробега молекул газа?
- 37. Длина свободного пробега молекул газа.
- 38. Перечислите явления переноса.
- 39. Чем обусловлено внутреннее трение в газе?
- 40. Что называется узлами кристаллической решетки?
- 41. Равновесно состояние и состояние термодинамического равновесия.
- 42. Когда движение тела падающего в жидкости, становится равномерным?
- 43. Турбулентное и ламинарное движение жидкости.
- 44. Агрегатные состояния вещества.
- 45. Уравнение Ван-дер-Ваальса.
- 46. Сформулируйте первое начало термодинамики.
- 47. Напишите общее выражение работы A, совершаемой при изменении объема V газа.
- 48. Какие процессы называются адиабатическими?
- 49. Что называется круговым процессом (циклом)? Цикл Карно.
- 50. Сформулируйте второе начало термодинамики.
- 51. Макроскопическое и микроскопическое состояние системы. Статистический вес.
- 52. Энтропия. Как изменяется энтропия изолированной системы при обратимых и необратимых процессах? Каким соотношением связанны между собой энтропия и вероятность состояния системы?
- 53. Абсолютная шкала температур.
- 54. Сформулируйте закон сохранения электрического заряда. Закон Кулона.
- 55. Напряженность и потенциал электрического поля. Каким соотношением связанны между собой напряженность и потенциал электрического поля?
- 56. Сформулируйте теорему Остроградского-Гаусса. Каково ее практическое применение?
- 57. Чему равна работа по перемещению заряда вдоль эквипотенциальной поверхности?
- 58. Емкость и конденсатор.
- 59. Что характеризует относительная диэлектрическая проницаемость?
- 60. Диэлектрики, проводники и сегнетоэлектрики.
- 61. Что называется силой тока?
- 62. Что называется электродвижущей силой генератора?
- 63. Законы Киргофа. Закон Ома.
- 64. Зависимость проводимости вещества от температуры.
- 65. Что называется магнитным полем?
- 66. Какую форму и ориентацию имеют линии магнитной индукции поля, создаваемого током в прямолинейном проводнике?
- 67. Магнитное поле контура с током.
- 68. Сформулируйте закон Ампера.
- 69. Что характеризует относительная магнитная проницаемость среды?
- 70. Вектор напряженности магнитного поля и вектор магнитной индукции.
- 71. Что называется точкой Кюри?
- 72. Движение заряженной частицы в магнитном поле.
- 73. Э.Д.С. индукции и Э.Д.С. самоиндукции. Индуктивность.
- 74. Взаимная индуктивность двух контуров.
- 75. От чего и как зависит индуктивное сопротивление соленоида?
- 76. Что может служить источником переменного электромагнитного поля?
- 77. Диапазон длин волн видимого света.

- 78. Чем является свет волной или частицей? Что называется оптически однородной средой?
- 79. Какие условия необходимы для полного внутреннего отражения света.
- 80. Что называют углом дисперсии?
- 81. Какие волны называются когерентными?
- 82. Почему при прохождении белого света через трехгранную призму происходит его разложение в спектр?
- 83. Законы геометрической оптики. Что называют фокусом линзы?
- 84. Перечислите основные фотометрические величины и их единицы измерения.
- 85. Что называют точечным источником света?
- 86. Интерференция и интерференционная картина.
- 87. Поляризация. Закон Малюса.
- 88. Угол Брюстера.
- 89. Дифракция света. Дифракция Френеля. Дифракция Фраунгофера. Дифракционная решетка.
- 90. Объясните, почему при использовании белого света дифракционные максимумы становятся цветными.
- 91. Какой свет называется поляризованным? Чем он отличается от естественного света?
- 92. Двулучепреломление. Оптическая ось кристалла.
- 93. Какие вещества называют оптически активными?
- 94. У какого тела лучепоглощательная характеристика равна единице?
- 95. Основные принципы специальной и общей теории относительности.
- 96. Понятие о квантовой механике.
- 97. Сформулируйте постулаты Бора? Что такое волны де Бройля?
- 98. Кратко изложите суть опытов Франка и Герца.
- 99. Фотоэффект.
- 100. Что называется энергией связи ядра? Что называется периодом полураспада? Радиоакривность.

9.3 Учебно-методическое обеспечение

- 1. Лабораторный физический практикум по механике, молекулярной физике, электричеству, оптике.
- 2. Виртуальный лабораторный практикум.

10. Форма промежуточной аттестации и фонд оценочных средств

Форма промежуточной аттестации: в первом семестре – зачет, во втором – экзамен. Фонд оценочных средств см. в Приложении.

Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) ФИЗИКА

В результате освоения дисциплины обучающийся должен изучить основные принципы механики, термодинамики, электродинамики и оптики.

- В разделе механики необходимо: знать понятия материальная точка, радиусвектор, скорость, ускорение, сила, момент инерции, момент силы, импельс, момент импульса и т.д. и уметь применять основные законы механики (законы Ньютона, законы сохранения и т.д.).
- В разделе термодинамики необходимо: различать понятия макроскопических и микроскопических ансамблей (систем), знать, что такое состояние системы, и какими величинами оно характеризуется, понимать, почему невозможно достичь абсолютного нуля температур и т.д.
- В разделе электродинамики необходимо: знать основные законы и понятия, а также уметь их использовать для идентификации материалов и их классификации

- (например, понимать разницу между парамегнетиками, диамагнетиками и феромагнетиками).
- Раздел оптики является наиболее эффективно используемым в геологии, поэтому законы геометрической оптики, интерференцию, дифракцию, поляризацию и дисперсию геологам необходимо изучить досканальным образом.

11. Ресурсное обеспечение:

11.1 Основная литература:

- 1. Сивухин Д.В. Общий курс физики Т. 1-2: [учебное пособие для физических специальностей вузов : в 5 т.] / Д. В. Сивухин М.: Изд-во Физматлит (МИФИ), 2005.-560 с.
- 2. Грабовский Р.И. Курс физики : [учебное пособие для студентов высших учебных заведений, обучающихся по естественнонаучным и техническим направлениям и специальностям] / Р. И. Грабовский. Изд-во Лань, 2012. 607 с. URL : https://e.lanbook.com/book/3178.
- 3. Савельев И. В. Курс общей физики: Учебное пособие для втузов: В 5 кн., М. : Наука. Физматлит, 1998.
- 4. Савельев И. В. Курс общей физики: Учебное пособие для втузов: В 5 кн., М. : Москва : Астрель : АСТ, 2002- 2006г.
- 5. Савельев И. В. Курс общей физики: Учебное пособие для втузов: В 4 кн., М. : Москва : Москва : Кнорус, 2009- 2012г.

11.2 Дополнительная литература:

- 1. Савельев И.В. Курс общей физики в 3 томах.— М.: Наука. Главная редакция физико-математической литературы, 1971, 1973, 1979, 1988
- 2. Иродов Д.В. Задачи по общей физике. M. : Hayka, 1979. 319 c.
- 3. Ландсберг Г.С. Оптика. M.: Hayka, 1976. 926 с.
- 4. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика Т.1-10 . М.: Физматлит, 1958-2007.

11.3 Ресурсы информационно-телекоммуникационной сети Интернет:

- 1. Электронная библиотека (репозиторий) НБ ТГУ [Электронный ресурс] / НИ ТГУ, Научная библиотека ТГУ. Электрон. дан. Томск, 2011- . URL: http://vital.lib.tsu.ru/vital/access/manager/Index
- 2. Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]. Электрон. дан. М., 2000- . URL: http://elibrary.ru/defaultx.asp/

12. Язык преподавания русский.

Приложение к рабочей программе по дисциплине

«Физика

Министерство науки и высшего образования российской федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Геолого-географический факультет

УТВЕРЖДАЮ:

Руководитель ООП по направлению 05.03.06 Экология и природопользование,

Упрород Т. В. Королева

21» мая

2020 г.

Фонд оценочных средств Для изучения учебной дисциплины

«Физика»

Направление подготовки **05.03.06** Экология и природопользование

Профиль подготовки **Природопользование**

Квалификация (степень) выпускника **Бакалавр** Фонд оценочных средств (ФОС) является элементом системы оценивания уровня сформированности компетенций обучающихся и выпускников, изучающих дисциплину «Физика» Основной образовательной программы «Геология» по направлению 05.03.06 Экология и природопользование (уровень бакалавриат).

Цель ФОС является установление соответствия уровня подготовки обучающихся и выпускников требованиям Федерального государственного образовательного стандарта высшего образования по направлению подготовки 05.03.06 Экология и природопользование, квалификация «бакалавр» (приказ Минобрнауки России № 998 от 11 августа 2016 г.).

Задачами ФОС являются:

- контроль и управление процессом приобретения обучающимися необходимых знаний, умений, навыков и уровня сформированности компетенций;
- контроль и управление достижением целей реализации ООП:
- оценка достижений обучающихся в процессе изучения дисциплин с определением результатов и планированием необходимых корректирующих мероприятий;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности.

В результате освоения дисциплины «Физика» у обучающегося формируется компетенция:

 компетенция ОПК-2: Владение базовыми знаниями фундаментальных разделов физики, химии и биологии в объёме, необходимом для освоения физических, химических и биологических основ в экологии и природопользовании; методами химического анализа, знаниями о современных динамических процессах в природе и техносфере о состоянии геосфер Земли, экологии и эволюции биосферы, глобальных экологических проблемах, методами отбора и анализа геологических и биологических проб, а также навыками идентификации и описания биологического разнообразия, его оценки современными методами количественной обработки информации

• способность использовать в профессиональной деятельности базовые знания математики и естественных наук.

2 Карты компетенций

КОМПЕТЕНЦИЯ ОПК-2: способность использовать в профессиональной деятельности базовые знания математики и естественных

наук

Уровень освоения компетенний	Планируемые результаты обучения (показатели достижения заданного		Критерии оц	Критерии оценивания результатов обучения	ов обучения	
	уровня освоения компетенций)	-	2	3	4	5
(ОПК-2) - !Владение	Уметь:	Отсутствие	Частично	В целом	В целом	Сформированное
оазовыми знаниями	применять основные законы	умений	освоенное умение	успешное, но не	успешное, но	умение применять
фундаментальных	естественных наук в практической и		применять	систематически	содержащее	основные законы
разделов физики,	познавательной деятельности		основные законы	осуществляемое	отдельные	естественных наук
химии и биологии в	y 2 (OIIK-2)-1		естественных наук	умение применять	пробелы умения	в практической и
объёме, необходимом			в практической и	основные законы	применять	познавательной
для освоения			познавательной	естественных наук	основные законы	деятельности
физических,			деятельности	в практической и	естественных наук	
химических				познавательной	в практической и	
биологических основ				деятельности	познавательной	
в экологии и					деятельности	

Уровень освоения компетенций	Планируемые результаты обучения (показатели достижения заданного		Критерии о	Критерии оценивания результатов обучения	гов обучения	
	уровня освоения компетенций)	1	2	3	4	5
природопользовании; методами химического анна, знаниями о современных динамических процессах в природе и техносфере, о состоянии геосфер Земли, экологии и эволюции биосферы, глобальных экологических проблемах, методами отбора и анализа геологических проб, а также навыками идентификации и описания биологического разнообразия, его оценки количественными методами количественной обработки	3нать: основные положения естественных наук 32 (ОПК-2) ~1	знаний	Фрагментарные знания основных положений естественных наук	Общие, но не структурированны е знания основных положений естественных наук	Сформированные, но содержащие отдельные пробелы знания основных положений естественных наук	Сформированные систематические знания основных положений естественных наук

Уровень освоения компетенций	Планируемые результаты обучения (показатели достижения заданного		Критерии оп	Критерии оценивания результатов обучения	ов обучения	
	уровня освоения компетенций)	1	2	3	4	5
	Знать:	Отсутствие	Фрагментарные	Общие, но не	Сформированные,	Сформированные
	область применения базовых знаний	знаний	знания области	структурированны	но содержащие	систематические
	математики и естественных наук в		применения	е знания области	отдельные	знания области
	своей профессиональной		базовых знаний	применения	пробелы знания	применения
	деятельности		математики и	базовых знаний	области	базовых знаний
	31 (OIIK-2)—II		естественных наук	математики и	применения	математики и
			в своей	естественных наук	базовых знаний	естественных наук
			профессиональной	в своей	математики и	в своей
			деятельности	профессиональной	естественных наук	профессиональной
				деятельности	в своей	деятельности
					профессиональной	
					деятельности	

3 Этапы формирования компетенций

	Форма	контроля												Слача залач и	лабораторных	,										
вго контроля	CPC														Y2 (OⅢK-2) − I											
и формы текуп	Лабораторные	занятия													Y2 (OⅢK-2) − I											
оцессе обучения	Практические	занятия												31 (OIIK-2) – 1												
омпетенций в пр	Лекции													31 (OIIK-2)-I												
Структура этапов освоения компетенций в процессе обучения и формы текущего контроля	Этапы формирования компетенций		Кинематика	Динамика материальной точки, законы	сохранения импульс и энергии	Вращательное движение твердого тела	Движение жидкости	Колебания и волны	Основные понятия молекулярной физики	Первое начало термодинамики	Статистический и термодинамический	подход	Второе и третье начало термодинамики	Изменение агрегатного состояния вещества	Электростатика	Постоянный электрический ток	Электромагнетизм	Переменный ток и самоиндукция	Свет и электромагнитная волна.	Интерференция света	Дифракция света.	Поляризация света	Дисперсия света	Квантовые свойства света	Элементы атомной физики	Элементы ядерной физики
	Ñ	п/п	1	2		3	4	5	9	7	∞		6	10	11	12	13	14	15	16	17	18	19	70	21	22

4 Промежуточная аттестация

Промежуточная аттестация состоит из устного зачета.

4.1 Вопросы к зачету по первой части дисциплины «Физика»

- 1. Векторное и скалярное произведение векторов.
- 2. Что называется материальной точкой?
- 3. Закон движения и траектория.
- 4. Дайте определение радиус-вектору, скорости и ускорению.
- 5. Тангенциальное и центростремительное ускорения, радиус кривизны траектории?
- 6. Понятия угловой скорости и углового ускорения.
- 7. Определение импульса и силы.
- 8. Понятие изолированной системы.
- 9. Сформулируйте закон сохранения импульса. Упругий и неупругий удар.
- 10. Какое свойство тела называется инерцией?
- 11. Какое условие необходимо для движения тела по инерции?
- 12. Законы Ньютона.
- 13. Закон Гука. Виды деформации тела.
- 14. Сформулируйте закон всемирного тяготения.
- 15. Принцип относительности Галилея. Инерциальные и неинерциальные системы отсчета.
- 16. Виды механической энергии. Работа и мощность.
- 17. Потенциальная энергия. Консервативные силы.
- 18. Что называется абсолютно твердым телом?
- 19. Момент инерции материальной точки и моментом инерции твердого тела.
- 20. Уравнение вращательного движения твердого тела.
- 21. Момент импульса. Закон сохранения момента импульса.
- 22. Что называется идеальной жидкостью? Трубка тока.
- 23. Сформулируйте и запишите математическое уравнение неразрывности струи.
- 24. Подход Лагранжа и подход Эйлера.
- 25. Гармонические колебания. Математический и физический маятники. Что называется амплитудой и фазой колебания? Период малых колебаний.
- 26. Затухающие и вынужденные колебания. Резонанс.
- 27. Что называется волной? Дайте определение поперечной и продольной волны. Что называется длиной волны? Может ли звук распространятся в вакууме?
- 28. Потенциальная энергия взаимодействия молекул.
- 29. Каков характер зависимости сил межмолекулярного взаимодействия от расстояния между молекулами? Чем обусловлено Броуновское движение?
- 30. Что называется удельной теплоемкостью вещества? Как влияют скорости хаотического движения молекул, составляющих тело, на его температуру?
- 31. Состояние идеального газа. Уравнение идеального газа.
- 32. Какими законами описываются изотермические и изобарические процессы?
- 33. Молярная газовая постоянная, постоянная Больцмана и число Авогадро.
- 34. Термодинамическая температура. Абсолютный ноль температур.
- 35. Что называется числом степеней свободы тела?
- 36. Распределение Максвелла и его характеристики.
- 37. Что называется длиной свободного пробега молекул газа?
- 38. Длина свободного пробега молекул газа.
- 39. Перечислите явления переноса.
- 40. Чем обусловлено внутреннее трение в газе?
- 41. Что называется узлами кристаллической решетки?
- 42. Равновесно состояние и состояние термодинамического равновесия.
- 43. Когда движение тела падающего в жидкости, становится равномерным?

- 44. Турбулентное и ламинарное движение жидкости.
- 45. Агрегатные состояния вещества.
- 46. Уравнение Ван-дер-Ваальса.
- 47. Сформулируйте первое начало термодинамики.
- 48. Напишите общее выражение работы A, совершаемой при изменении объема V газа.
- 49. Какие процессы называются адиабатическими?
- 50. Что называется круговым процессом (циклом)? Цикл Карно.
- 51. Сформулируйте второе начало термодинамики.
- 52. Макроскопическое и микроскопическое состояние системы. Статистический вес.
- 53. Энтропия. Как изменяется энтропия изолированной системы при обратимых и необратимых процессах? Каким соотношением связанны между собой энтропия и вероятность состояния системы?
- 54. Абсолютная шкала температур.

4.2 Вопросы к устному экзамену по второй части дисциплины «Физика»

- 1. Векторное и скалярное произведение векторов.
- 2. Что называется материальной точкой?
- 3. Закон движения и траектория.
- 4. Дайте определение радиус-вектору, скорости и ускорению.
- 5. Тангенциальное и центростремительное ускорения, радиус кривизны траектории?
- 6. Понятия угловой скорости и углового ускорения.
- 7. Определение импульса и силы.
- 8. Понятие изолированной системы.
- 9. Сформулируйте закон сохранения импульса. Упругий и неупругий удар.
- 10. Какое свойство тела называется инерцией?
- 11. Какое условие необходимо для движения тела по инерции?
- 12. Законы Ньютона.
- 13. Закон Гука. Виды деформации тела.
- 14. Сформулируйте закон всемирного тяготения.
- 15. Принцип относительности Галилея. Инерциальные и неинерциальные системы отсчета.
- 16. Виды механической энергии. Работа и мощность.
- 17. Потенциальная энергия. Консервативные силы.
- 18. Что называется абсолютно твердым телом?
- 19. Момент инерции материальной точки и моментом инерции твердого тела.
- 20. Уравнение вращательного движения твердого тела.
- 21. Момент импульса. Закон сохранения момента импульса.
- 22. Что называется идеальной жидкостью? Трубка тока.
- 23. Сформулируйте и запишите математическое уравнение неразрывности струи.
- 24. Подход Лагранжа и подход Эйлера.
- 25. Гармонические колебания. Математический и физический маятники. Что называется амплитудой и фазой колебания? Период малых колебаний.
- 26. Затухающие и вынужденные колебания. Резонанс.
- 27. Что называется волной? Дайте определение поперечной и продольной волны. Что называется длиной волны? Может ли звук распространятся в вакууме?
- 28. Потенциальная энергия взаимодействия молекул.
- 29. Каков характер зависимости сил межмолекулярного взаимодействия от расстояния между молекулами? Чем обусловлено Броуновское движение?
- 30. Что называется удельной теплоемкостью вещества? Как влияют скорости хаотического движения молекул, составляющих тело, на его температуру?
- 31. Состояние идеального газа. Уравнение идеального газа.

- 32. Какими законами описываются изотермические и изобарические процессы?
- 33. Молярная газовая постоянная, постоянная Больцмана и число Авогадро.
- 34. Термодинамическая температура. Абсолютный ноль температур.
- 35. Что называется числом степеней свободы тела?
- 36. Распределение Максвелла и его характеристики.
- 37. Что называется длиной свободного пробега молекул газа?
- 38. Длина свободного пробега молекул газа.
- 39. Перечислите явления переноса.
- 40. Чем обусловлено внутреннее трение в газе?
- 41. Что называется узлами кристаллической решетки?
- 42. Равновесно состояние и состояние термодинамического равновесия.
- 43. Когда движение тела падающего в жидкости, становится равномерным?
- 44. Турбулентное и ламинарное движение жидкости.
- 45. Агрегатные состояния вещества.
- 46. Уравнение Ван-дер-Ваальса.
- 47. Сформулируйте первое начало термодинамики.
- 48. Напишите общее выражение работы A, совершаемой при изменении объема V газа.
- 49. Какие процессы называются адиабатическими?
- 50. Что называется круговым процессом (циклом)? Цикл Карно.
- 51. Сформулируйте второе начало термодинамики.
- 52. Макроскопическое и микроскопическое состояние системы. Статистический вес.
- 53. Энтропия. Как изменяется энтропия изолированной системы при обратимых и необратимых процессах? Каким соотношением связанны между собой энтропия и вероятность состояния системы?
- 54. Абсолютная шкала температур.
- 55. Сформулируйте закон сохранения электрического заряда. Закон Кулона.
- 56. Напряженность и потенциал электрического поля. Каким соотношением связанны между собой напряженность и потенциал электрического поля?
- 57. Сформулируйте теорему Остроградского-Гаусса. Каково ее практическое применение?
- 58. Чему равна работа по перемещению заряда вдоль эквипотенциальной поверхности?
- 59. Емкость и конденсатор.
- 60. Что характеризует относительная диэлектрическая проницаемость?
- 61. Диэлектрики, проводники и сегнетоэлектрики.
- 62. Что называется силой тока?
- 63. Что называется электродвижущей силой генератора?
- 64. Законы Киргофа. Закон Ома.
- 65. Зависимость проводимости вещества от температуры.
- 66. Что называется магнитным полем?
- 67. Какую форму и ориентацию имеют линии магнитной индукции поля, создаваемого током в прямолинейном проводнике?
- 68. Магнитное поле контура с током.
- 69. Сформулируйте закон Ампера.
- 70. Что характеризует относительная магнитная проницаемость среды?
- 71. Вектор напряженности магнитного поля и вектор магнитной индукции.
- 72. Что называется точкой Кюри?
- 73. Движение заряженной частицы в магнитном поле.
- 74. Э.Д.С. индукции и Э.Д.С. самоиндукции. Индуктивность.
- 75. Взаимная индуктивность двух контуров.
- 76. От чего и как зависит индуктивное сопротивление соленоида?
- 77. Что может служить источником переменного электромагнитного поля?
- 78. Диапазон длин волн видимого света.

- 79. Чем является свет волной или частицей? Что называется оптически однородной средой?
- 80. Какие условия необходимы для полного внутреннего отражения света.
- 81. Что называют углом дисперсии?
- 82. Какие волны называются когерентными?
- 83. Почему при прохождении белого света через трехгранную призму происходит его разложение в спектр?
- 84. Законы геометрической оптики. Что называют фокусом линзы?
- 85. Перечислите основные фотометрические величины и их единицы измерения.
- 86. Что называют точечным источником света?
- 87. Интерференция и интерференционная картина.
- 88. Поляризация. Закон Малюса.
- 89. Угол Брюстера.
- 90. Дифракция света. Дифракция Френеля. Дифракция Фраунгофера. Дифракционная решетка.
- 91. Объясните, почему при использовании белого света дифракционные максимумы становятся цветными.
- 92. Какой свет называется поляризованным? Чем он отличается от естественного света?
- 93. Двулучепреломление. Оптическая ось кристалла.
- 94. Какие вещества называют оптически активными?
- 95. У какого тела лучепоглощательная характеристика равна единице?
- 96. Основные принципы специальной и общей теории относительности.
- 97. Понятие о квантовой механике.
- 98. Волновая функция, уравнение Шредингера.
- 99. Потенциальная яма и потенциальный барьер.
- 100. Сформулируйте постулаты Бора? Что такое волны де Бройля?
- 101. Кратко изложите суть опытов Франка и Герца.
- 102. Фотоэффект.
- 103. Что называется энергией связи ядра? Что называется периодом полураспада? Радиоакривность.
- 104. Альфа-, бета-, гамма- излучение.

Критерии оценивания:

Оценка	Критерии оценки
Отлично	Студент выполнил все лабораторные работы, сдал все задачи и
	правильно ответил на все вопросы на экзамене.
Хорошо	Студент выполнил все лабораторные работы, сдал все задачи и ответил
33"	на все вопросы на экзамене с несущественными ошибками.
Удовлетворительно	Студент выполнил все лабораторные работы, сдал все задачи и ответил
	на все вопросы на экзамене, но лишь частично.
Неудовлетворительно	Студент выполнил все лабораторные работы, сдал все задачи, но не
	ответил на вопросы на экзамене.