Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Центр сопровождения образовательных инициативных проектов

УТВЕРЖДЕНО:

Руководитель сетевой ОПОП В.В. Кашпур

Рабочая программа дисциплины

Теория вероятности и математическая статистика для анализа данных

по направлению подготовки

09.04.03 Прикладная информатика

Направленность (профиль) подготовки : «Дата-аналитика для бизнеса»

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2023**

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен самостоятельно приобретать, развивать и применять математические, естественнонаучные, социально-экономические и профессиональные знания для решения нестандартных задач, в том числе в новой или незнакомой среде и в междисциплинарном контексте.
- ОПК-3 Способен анализировать профессиональную информацию, выделять в ней главное, структурировать, оформлять и представлять в виде аналитических обзоров с обоснованными выводами и рекомендациями.
- ОПК-7 Способен использовать методы научных исследований и математического моделирования в области проектирования и управления информационными системами;.
- ПК-4 Способен разрабатывать и реализовывать маркетинговые программы с использованием инструментов комплекса маркетинга.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-1.1 Владеет фундаментальными математическими, естественнонаучными, социально-экономическими и профессиональными понятиями в контексте решения задач в области информационных технологий.
- ИОПК-1.2 Определяет взаимосвязи, закономерности, обобщает, абстрагирует фундаментальные модели, законы, методики для решения нестандартных задач, в том числе в новой или незнакомой среде и в междисциплинарном контексте.
- ИОПК-1.3 Развивает и применяет математические, естественнонаучные, социально-экономические и профессиональные знания для решения задач
- ИОПК-3.1 Осуществляет сбор, обработку и анализ научно-технической информации, необходимой для решения профессиональных задач.
- ИОПК-3.2 Умеет работать с различными видами информации с помощью различных средств информационных и коммуникационных технологий.
- ИОПК-7.1 Владеет методами научных исследований и математического моделирования для решения профессиональных задач в области проектирования и управления информационными системами.
- ИОПК-7.3 Разрабатывает и применяет математические модели в области проектирования и управления информационными системами.
- ИПК-4.3 Использует методы проведения маркетинговых исследований в области распределения (дистрибуции) и продаж.

2. Задачи освоения дисциплины

- Освоить аппарат теории вероятностей, математической и прикладной статистики для анализа данных.
- Научиться применять понятийный аппарат и основные методы вероятностного и статистического анализа для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)». Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 1, зачет.

Семестр 2, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 6 з.е., 216 часов, из которых:

- -лекции: 20 ч.
- -практические занятия: 40 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Теория вероятностей. Случайные величины

Дискретные и непрерывные случайные величины. Способы задания случайных величин. Функции случайных величин. Основные числовые характеристики случайных величин. Основные законы распределения дискретных и непрерывных случайных величин. Другие числовые характеристики. Системы случайных величин.

Тема 2. Статистика. Введение.

Генеральная и выборочная совокупности. Способы представления выборок: табличные и графические.

Тема 3. Проверка статистических гипотез.

Проверка статистических гипотез. Алгоритм проверки. Критерий согласия. Пример работы алгоритма. P-value. Практика по работе с выборками. Генерация. Визуализация. Описательные статистики. Проверка вида распределения.

Тема 4. Закон больших чисел. Центральная предельная теорема

Нормальный закон распределения. ЗБЧ. ЦПТ.

Тема 5. Параметрические критерии сравнения групп

Параметрические критерии сравнения групп. Z-test, t-test, Fisher. Правило сложения дисперсий. ANOVA. Практика по параметрическим критериям.

Тема 6. Непараметрические критерии сравнения групп

U -критерии Манна-Уитни и критерий Вилкоксона. Критерии Краскала-Уолиса и Фридмана. Практика по непараметрическим критериям.

Тема 7. Корреляционный анализ

Корреляционный анализ количественных данных. Ранговая корреляция. Корреляционный анализ категоризованных данных. Таблицы сопряженности. Корреляционный анализ а Python.

Тема 8. Регрессионный анализ

Парная регрессия. Постановка задачи. Оценка параметров. Проверка качества модели парной регрессии. Множественная регрессия. Постановка задачи. Оценка параметров. Проверка качества модели множественной регрессии. Построение регрессионных моделей в Python.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости вебинаров и практических занятий, тестов по лекционному материалу и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в первом семестре проводится в форме теста, включающего в себя как вопросы по теории, так и решение небольших практических задач.

Тест состоит из 10 вопросов разной сложности, за каждый из которых можно набрать от 1 до 3 баллов. Максимум за тест 20 баллов.

Баллы	Оценка
[13,20]	Зачтено
[0,13)	Незачтено

Экзамен во втором семестре проводится в форме теста, включающего в себя как вопросы по теории, так и решение небольших практических задач.

Тест состоит из 15 вопросов разной сложности, за каждый из которых можно набрать от 1 до 3 баллов. Максимум за тест 30 баллов.

Баллы	Оценка
[26,30]	Отлично
[21,26)	Хорошо
[16,21)	Удовлетворительно
[0,16)	Неудовлетворительно

Примерные вопросы теста:

- 1) Какие из ниже приведенных законов являются законами распределения непрерывных случайных величин?
 - а) равномерное
 - б) геометрическое
 - в) биномиальное
 - г) нормальное
 - д) Пуассона
 - г) Стьюдента
 - д) экспоненциальное
- 2) Какие из ниже приведенных способов не определены для дискретных случайных величин?
 - а) функция распределения
 - б) ряд распределения
 - в) плотность распределения
- 3) Для случайной величины, распределенной по стандартному равномерному закону чему равна вероятность попадания в интервал от 0.4 до 0.7? (Ввести значение)
- 4) Доверительным интервалом называется
 - а) любой интервал, содержащий истинное значение оцениваемого параметра
 - б) интервал, содержащий истинное значение оцениваемого параметра с вероятностью 1.
 - в) интервал, содержащий истинное значение оцениваемого параметра с вероятностью $1-\alpha$.

- 5) Для визуализации зависимости одного количественного показателя от одного категориального фактора, имеющего два и более уровней, лучше всего подойдет график:
 - a) Histogram
 - δ) Boxplot
 - в) Scatterplot
 - г) q-q plot
- 6) Пусть Z статистика правостореннего критерия. Zr критическая граница, соответствующая уровню значимости 0.05. Zs – выборочное значение статистики, полученное по элементам выборки. Что такое p-value?

a)
$$p - value = P(Z \ge Zr \mid H_0)$$

6)
$$p - value = P(Z \ge Zs \mid H_0)$$

a)
$$p - value = P(Z \ge Zr \mid H_0)$$

6) $p - value = P(Z \ge Zs \mid H_0)$
B) $p - value = P(Z < Zr \mid H_0)$
 r) $p - value = P(Z < Zs \mid H_0)$

$$\Gamma p - value = P(Z < Zs \mid H_0)$$

- 7) По критерию Шапиро-Уилка были получены следующие результаты. Какой вывод можно сделать?
- W = 0.97396, p-value = 0.04472
- а) Выборка подчиняется нормальному закону распределения на уровне значимости 0.05
- б) Выборка не подчиняется нормальному закону распределения на уровне значимости 0.05
- в) Выборка подчиняется нормальному закону распределения на уровне значимости 0.03
- г) Выборка не подчиняется нормальному закону распределения на уровне значимости 0.03
- д) Выборка подчиняется нормальному закону распределения на уровне значимости 0.01
- е) Выборка не подчиняется нормальному закону распределения на уровне значимости 0.01
 - 8) Для двух порядковых переменных при расчете коэффициента Спирмена были получены следующие результаты.

$$r = -0.17558892$$
 $p = 0.0316143305$

Какой вывод можно сделать при уровне значимости $\alpha = 0.05$?

- а) имеется прямая статистически значимая связь между переменными;
- б) имеется обратная статистически значимая связь между переменными;
- в) между переменными нет статистически значимой корреляционной связи.
- 9) В таблице представлены результаты регрессионного анализа для многофакторной линейной модели.

	$R^2 = 0.7005$ $R^2_{adj} = 0.691$ $F(4, 127) = 74.25$ $p < 2.2e - 16$ $S_e = 2037$				
n = 130	Estimate	Std. Error	t-value	p – value	
(Intercept)	3934.02	631.68	6.228	6.37e-09	
X1	201.11	18.50	10.872	< 2e-16	
X2	23.25	75.49	0.308	0.7586	
X3	-38.31	446.60	-0.086	0.9318	
X4	898.30	388.79	2.310	0.0225	

Сколько значимых параметров в той модели на уровне значимости 0.05? (введите число)

- 10) Какой критерий можно использовать для сравнения по некоторому уровню трех независимых ненормальных совокупностей.
 - a) t-test
 - б) ANOVA
 - в) Критерий Манна-Уитни
 - г) Критерий Вилкоксона
 - д) Критерий Краскала-Уолиса
 - е) Критерий Фридмана

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-метолическое обеспечение

- а) Электронный учебный курс по дисциплине в LMS «Data-Diving».
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (https://www.tsu.ru/sveden/education/eduop/).
 - в) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Практическая статистика для специалистов Data Science: Пер. с англ. /. П. Брюс, Э. Брюс. СПб.: БХВ-Петербург, 2018. 304 с.: ил. ISBN 978-5-9775-3974-6.
 - б) дополнительная литература:
- Кендалл М. Д. Статистические выводы и связи / М. Кендалл, А. Стьюарт; Пер. с англ. Л. И. Гальчука, А. Т. Терехина; Под ред. А. Н. Колмогорова. М.: Наука. Физматлит, 1973. 899, [1] с.: ил..

URL: http://sun.tsu.ru/limit/2016/000074332/000074332.djvu

- Маккинли Уэс. Python и анализ данных. Москва : ДМК Пресс, 2015. 482 с. ISBN 978-5-97060-315-4
- Джеймс Г., Уиттон Д., Хасти Е., Тибширани Р., Введение в статистическое обучение с примерами на языке R. М.: ДМК Пресс, 2016 г., 450 с.
- Орлов А.И., Прикладная статистика. Учебник. / А.И.Орлов.- М.: Издательство «Экзамен», 2004. 656 с.
- Кабанова Т. В. Применение пакета R для решения задач прикладной статистики : учебное пособие : [для студентов и аспирантов университетов] / Т. В. Кабанова ; М-во образования и науки РФ, Нац. исслед. Том. гос. ун-т. Томск : Издательский Дом Томского государственного университета, 2019. 123 с.: ил., табл..

URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000668036

- в) ресурсы сети Интернет:
- открытые онлайн-курсы
- machine learning repository https://archive.ics.uci.edu/ml/index.php
- https://www.kaggle.com/
- https://docs.scipv.org/doc/scipv/reference/stats.html/
- https://docs.python.org/3/library/statistics.htm

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.);
 - Python https://pytorch.org/;
 - Anaconda https://www.anaconda.com/
 - Jupyter notebook https://jupyter.org/
 - R https://www.r-project.org/
 - R Studio https://www.rstudio.com/.
 - JASP https://jasp-stats.org/.
 - б) информационные справочные системы:
 - Электронный каталог Научной библиотеки ТГУ https://koha.lib.tsu.ru/
 - Электронная библиотека (репозиторий) ТГУ

http://vital.lib.tsu.ru/vital/access/manager/Index

- ЭБС Лань http://e.lanbook.com/
- ЭБС Консультант студента http://www.studentlibrary.ru/
- Образовательная платформа Юрайт https://urait.ru/
- 3FC ZNANIUM.com https://znanium.com/
- ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Занятия по учебной дисциплине проводятся с использованием дистанционных образовательных технологий. Каждый обучающийся обеспечен доступом к образовательной платформе https://edu.data-diving.ru/.

15. Информация о разработчиках

Кабанова Татьяна Валерьевна, кандидат физико-математических наук, доцент кафедры теории вероятностей и математической статистики ИПМКН ТГУ.