Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Механико-математический факультет

УТВЕРЖДАЮ:

Декан

Л. В.Гензе

«30»

2022 г

Рабочая программа дисциплины

Групповой анализ дифференциальных уравнений

по направлению подготовки

01.04.01 Математика

Направленность (профиль) подготовки : Фундаментальная математика

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2022**

Код дисциплины в учебном плане: Б1.В.2.ДВ.03.01

СОГЛАСОВАНО:

П.А.Крылов

Председатель УМК

Е.А.Тарасов

Томск - 2022

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1 Способен формулировать и решать актуальные и значимые проблемы математики.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 1.1 Формулирует поставленную задачу, пользуется языком предметной области, обоснованно выбирает метод решения задачи.

2. Задачи освоения дисциплины

Изучение классических основ и современных методов группового анализа дифференциальных уравнений, а также высших симметрий. Данная дисциплина посвящена в основном изучению основ теории локальных групп Ли и применении их к построению точных решений дифференциальных уравнений.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)». Дисциплина относится к базовой части ООП, обязательна для изучения.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются следующие пререквизиты: «Математический анализ», «Геометрия», «Алгебра», «Дифференциальные уравнения», «Уравнения в частных производных».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 2 з.е., 72 часов, из которых: -лекции: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Базовые понятия группового анализа.

Группа Ли. Оператор группы. Инварианты и инвариантные многообразия.

Тема 2. Д.у. как многообразие.

Теория продолжения. Группы Ли, допускаемые д.у.

Тема 3. Группа симметрий уравнения в частных производных.

Приложение группового анализа к исследованию д.у. в частных производных.

Тема 4. Группа симметрий ОДУ.

Приложение группового анализа к исследованию о.д.у.

Тема 5. Алгебра Ли.

Различные приемы исследования решений д.у.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, опроса по лекционному материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в третьем семестре проводится в письменной форме по билетам. Билет содержит теоретический вопрос и две задачи. Продолжительность зачета 1,5 часа.

Примерный перечень теоретических вопросов

- 1. Однопараметрическая группа преобразований. Канонический параметр.
- 2. Касательное векторное поле. Уравнение Ли.
- 3. Инфинитезимальный оператор группы. Инвариант группы. Критерий инварианта.
- 4. Подобие групп. Инвариантность оператора.
- 5. Теорема о подобии.
- 6. Инвариантные многообразия. Критерий инвариантности многообразия.
- 7. Продолжение пространства. Продолжение преобразования группы.
- 8. Продолжение инфинитезимального оператора.
- 9. Дифференциальный инвариант группы. Дифференциальное инвариантное многообразие.
- 10. Группа, допускаемая дифференциальным уравнением. Алгоритм нахождения допускаемой группы.
- 11. Алгебра Ли. Многопараметрическая группа.
- 12. Метод интегрирующего множителя.
- 13. Метод выпрямления допускаемого оператора.
- 14. Метод дифференциальных инвариантов.

Примеры задач:

- 1. Проверить, что уравнение $y^2y''' = \nu(2yy'' y'^2)$, где y = y(x), ν константа, допускает операторы $(\zeta_1\partial) = \partial_x$, $(\zeta_1\partial) = x\partial_x + y\partial_y$ и используя эти операторы понизить порядок до первого.
- 2. Найти допустимые операторы для уравнения $y'' \frac{y'}{x} + e^y = 0$.
- 3. Проверить, что уравнение $y'' + 2\left(y' \frac{y}{x}\right)^3 = 0$ допускает Алгебру Ли с базисными операторами $(\zeta_1\partial) = x^2\partial_x + xy\partial_y$, $(\zeta_1\partial) = xy\partial_x + y^2\partial_y$ и проинтегрируйте уравнение с помощью этой алгебры (привести к каноническому виду).

При ответе на вопросы теста оценивается полнота и точность ответа, логичность и аргументированность изложения материала, умения использовать в ответе фактический материал. Для выставления текущей успеваемости при контроле СРС рекомендуется использовать следующую таблицу.

Студент владеет терминологией, твердо знает программный	зачтено
материал, способен применять знание теории к решению задач,	
допускают отдельные погрешности и неточности при ответе.	
обнаруживают значительные пробелы в знаниях основного	не зачтено
программного материала, допускают принципиальные ошибки при	
решении задач и ответе на теоретические вопросы.	

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=6627
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине [Головин С.В., Чесноков А.А. Групповой анализ дифференциальных уравнений / Новосибирск: НГУ, 2009.]

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Овсянников Л.В. Групповой анализ дифференциальных уравнений. М.: Наука, 1978.
- Олвер П. Приложения групп Ли к дифференциальным уравнениям. М.: Мир, 1989.
- Ибрагимов Н.Х. Группы преобразований в математической физике. М., Наука, 1983.
 - б) дополнительная литература:
 - Ибрагимов Н.Х. Опыт группового анализа М.: Знание 1991
 - Ибрагимов Н.Х. Азбука группового анализа М.: Знание 1989
 - Овсянников Л.В. Приложения групп Ли к дифференциальным уравнениям М.: Мир 1989
 - Егоров А.И Обыкновенные дифференциальные уравнения с приложениями М.: ФИЗМАТЛИТ 2005

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение: Специальное программное обеспечение не требуется.
- б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

15. Информация о разработчиках

Доцент ММФ ТГУ, к.ф.-м.н. Колесников Иван Александрович.