Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

Рабочая программа дисциплины

Дискретная математика

02.03.03 Математическое обеспечение и администрирование информационных систем

Направленность (профиль) подготовки:

DevOps-инженерия в администрировании инфраструктуры ИТ-разработки

Форма обучения

Очная

Квалификация

Бакалавр

Год приема

2023

Код дисциплины в учебном плане: Б1.О.02.01

СОГЛАСОВАНО:

Руководитель ОП

С.П.Сущенко

Председатель УМК

и_С.П.Сущенко

Томск - 2023

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 - Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-1.3 Обладает необходимыми знаниями для исследования информационных систем и их компонент.

ИОПК-1.2 Использует фундаментальные знания, полученные в области математических и (или) естественных наук в профессиональной деятельности.

ИОПК-1.1 Применяет фундаментальные знания, полученные в области математических и (или) естественных наук.

2. Задачи освоения дисциплины

- познакомить студентов с основными понятиями теории множеств, булевых функций и функций k-значной логики
- научить использовать изученные методы дискретной математики для формализации и решения прикладных задач.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к обязательной части образовательной программы. Дисциплина входит в модуль "Математика".

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 5 з.е., 180 часов, из которых:

- -лекции: 32 ч.
- -практические занятия: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Основные понятия теории булевых функций

Множества. Булевы константы и векторы. Булево пространство и интервал. Булевы переменные и булевы функции, фиктивные переменные. Формулы и равносильности. Двойственная функция и двойственная формула.

Тема2. Нормальные формы булевых функций

Разложение булевой функции по переменным, совершенные дизьюнктивная и коньюнктивная нормальные формы. Дизьюнктивная нормальная форма. Сокращенная, кратчайшая, минимальная и безызбыточная дизьюнктивные нормальные формы.

Тема 3. Минимизация булевых функций

Построение сокращенной дизъюнктивной нормальной формы. Построение таблицы Квайна и поиск её покрытий. Приближенная кратчайшая ДНФ

Тема 4. Частичные булевы функции.

Определение и способы задания частичной булевой функции. Минимизация частичных булевых функций.

Тема 5. Важнейшие замкнутые классы и функциональная полнота

Важнейшие замкнутые классы булевых функций. Функциональная полнота системы булевых функций.

Тема 6. Функции k-значной логики

Функции k-значной логики. Элементарные функции. Формулы. Совершенные формы. Полиномы по mod k. Построение полиномов. Полные системы. Критерии полноты. Доказательство критерия Яблонского.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Теоретические и практические результаты формируются компетенциями ИОПК-1.1; ИОПК-1.2; ИОПК-1.3 и результатами обучения:

№	Этапы формирования компетенций (разделы дисциплины)	Код и наименование результатов обучения
1.	Тема 1. Основные понятия теории булевых функций Тема2. Нормальные формы булевых функций Тема 3. Минимизация Тема 4. Частичные булевы функции. Тема 5. Важнейшие замкнутые классы и функциональная полнота Тема 6. Функции k-значной логики	ОР-1.1.1. Знать теорию множеств, булеву алгебру ОР-1.1.2. Знать теорию бинарных отношений ОР-1.1.3. Знать теорию булевых функций ОР-1.2.1. Уметь производить эквивалентные преобразования выражений ОР-1.2.2. Уметь определять вид бинарных отношений ОР-1.3.1 Уметь определять нормальные формы булевых функций

Промежуточная аттестация по дисциплине проводится в форме устного экзамена по теоретическому материалу. К промежуточной аттестации допускаются только студенты, успешно прошедшие текущие аттестации по практическим занятиям.

Каждый билет для промежуточной аттестации состоит из трех теоретических вопросов по темам из разных разделов дисциплины. В качестве дополнительных вопросов

во время проведения промежуточной аттестации используются контрольные вопросы, предлагаемые для самостоятельной работы обучающегося.

Оценка «Отлично» выставляется студенту, который:

Уверенно владеет основными понятиями и теоремами булевых функций и функций k-значной логики.

Уверенно знает проблемы минимизации и функциональной полноты булевых функций.

Умеет эффективно применять алгоритмы и теоремы булевых и k-значных функций в задачах защиты информации.

Уверенно владеет аппаратом функций булевых и k-значной логики для задания структуры и поведения дискретных (цифровых) устройств, в частности, устройств шифрования.

Оценка «Хорошо» выставляется студенту, который:

Знает основные понятия и теоремы булевых функций и функций к-значной логики.

Знает проблемы минимизации и функциональной полноты булевых функций.

Умеет применять алгоритмы и теоремы булевых и k-значных функций в задачах защиты информации.

Владеет аппаратом функций булевых и k-значной логики для задания структуры и поведения дискретных (цифровых) устройств, в частности, устройств шифрования.

Оценка «Удовлетворительно» выставляется студенту, который:

Поверхностно знает основные понятия и теоремы булевых функций и функций кзначной логики.

Поверхностно знает проблемы минимизации и функциональной полноты булевых функций.

Неуверенно умеет применять алгоритмы и теоремы булевых и k-значных функций в задачах защиты информации.

Неуверенно владеет аппаратом функций булевых и k-значной логики для задания структуры и поведения дискретных (цифровых) устройств, в частности, устройств шифрования.

Оценка «Неудовлетворительно» выставляется студенту, который:

Не знает основные понятия и теоремы булевых функций и функций k-значной логики.

Не знает проблемы минимизации и функциональной полноты булевых функций.

Не умеет применять алгоритмы и теоремы булевых и k-значных функций в задачах защиты информации.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=6558
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (Приложение 1).

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Яблонский С.В. Введение в дискретную математику, М.: Высшая школа. 2010 381 с.
- Быкова С.В., Буркатовская Ю.Б. Булевы функции. Учебное пособие. Томск: ТГУ, 2008-192 с.

- б) дополнительная литература:
- Закревский А. Д., Потосин Ю. В., Черемисинова Л. Д. Основы логического проектирования. В 3 кн. Кн 2. Мн.: ОИПИ ВАН Беларуси, 2004. 240 с.
- Конспект лекций О.Б. Лупанова по курсу «Введение в математическую логику» /Отв. ред. А.Б.Угольников. М.: Изд-во ЦПИ при механико-математическом факультете МГУ имени М.В.Ломоносова, 2007. 192 с.
 - в) ресурсы сети Интернет:
- Электронная библиотека (репозиторий) ТГУ [Электронный ресурс] / Электронная библиотека (репозиторий) ТГУ: [сайт]. [Томск, 2011–2016]. URL: http://vital.lib.tsu.ru/vital/access/manager/Index.
- Издательство «Лань» [Электронный ресурс]: электрон.-библиотечная система. Электрон. Дан. СПб., 2010. URL: http://e.laubook.com/
- Общероссийская Сеть КонсультантПлюс Справочная правовая система http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Широкова Екатерина Владимировна, старший преподаватель кафедры компьютерной безопасности.