Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ:

Декан физического факультета

С.Н. Филимонов

« M »

20 L 2

Рабочая программа дисциплины

Оптические методы в биомедицине

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки «Физические методы и информационные технологии в биомедицине»

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2022**

Код дисциплины в учебном плане: Б1.В.ДВ.03.01

СОГЛАСОВАНО:

Руководитель ОП

В.П. Демкин

Председатель УМК

___О.М. Сюсина

Томск - 2022

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- УК-1 способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий;
- УК-4 способен применять современные коммуникативные технологии, в том числе на иностранном (ых) языке (ах), для академического и профессионального взаимодействия;
- ПК-2 способен использовать свободное владение компьютерными программами анализа многомерных биомедицинских данных в задачах оценки состояния биосистем;
- ПК-3 способен соблюдать правила безопасности в потенциально опасных лабораторных условиях.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИУК-1.1. Выявляет проблемную ситуацию, на основе системного подхода осуществляет ее многофакторный анализ и диагностику.
- ИУК-1.2. Осуществляет поиск, отбор и систематизацию информации для определения альтернативных вариантов стратегических решений в проблемной ситуации
- ИУК-1.3. Предлагает и обосновывает стратегию действий с учетом ограничений, рисков и возможных последствий.
- ИУК-4.1. Обосновывает выбор актуальных коммуникативных технологий (информационные технологии, модерирование, медиация и др.) для обеспечения академического и профессионального взаимодействия.
- ИУК-4.2. Применяет современные средства коммуникации для повышения эффективности академического и профессионального взаимодействия, в том числе на иностранном (ых) языке (ах).
- ИУК-4.3. Оценивает эффективность применения современных коммуникативных технологий в академическом и профессиональном взаимодействиях
- ИПК-2.1. Знает принципы и методы сбора, обработки и наглядного представления медико-биологической информации.
- ИПК-2.2. Умеет планировать и разрабатывать дизайн медико-биологических исследований с использованием современных компьютерных технологий и программных средств.
- ИПК-2.3. Владеет навыками визуализации, моделирования, анализа результатов биомедицинских исследований.
- ИПК-3.1. Знает основные требования к проведению экспериментов с биообъектами в потенциально опасных лабораторных условиях и характер физиологических изменений
- ИПК-3.2. Умеет обеспечивать биологическую безопасность при работе в научноисследовательских лабораториях
- ИПК-3.3. Владеет приемами выявления конкретных биологических рисков при работе с биологическими объектами

2. Задачи освоения дисциплины

- Знакомство с основами взаимодействия излучения с веществом;
- знакомство с физическими основами методов спектрального анализа биологических объектов;
- знакомство со спектральной техникой, используемой для диагностических целей в биологии и медицине.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части, формируемой участниками образовательных отношений образовательной программы (дисциплины по выбору Б1.В.ДВ.3).

Дисциплина нацелена на изучение современных принципов работы оптического и спектрального оборудования для решения биомедицинских задач. Особое внимание уделяется физическим основам методов электронной, ИК и Раман спектроскопии и их диагностического применения в биологии и медицине. Анализируются наиболее широко используемые в практике перспективные методы спектральной диагностики. В результате изучения курса обучающиеся приобретают фундаментальные и прикладные знания о принципах экспериментальных исследований с использованием современного спектрального оборудования, а также интерпретации полученных результатов.

Полученные в рамках дисциплины компетенции необходимы для эффективной организации научно-исследовательской работы с применением современного оптического и спектрального оборудования в области биомедицины, а также в клинической медицинской практике.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 3, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины обучающиеся должны иметь общие представления о взаимодействии света с веществом.

Специальные компетенции для освоения дисциплины не предусмотрены.

6. Язык реализации

Английский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 5 з.е., 180 часов, из которых:

- лекции: 16 ч.;
- лабораторные работы: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Введение в эмиссионно-атомную спектроскопию.

Введение в атомную спектроскопию. Описание базовых элементов спектральной аппаратуры: источники и приемники света, оптические элементы, принципы работы спектральных приборов.

Тема 2. Применение колебательно-вращательных методов молекулярной спектроскопии в медицине.

Описание методов ИК спектроскопии их приложений в медицине. Спектрометры высокого разрешения в молекулярной спектроскопии (дифракционная спектроскопия, Фурье-спектроскопия, аналитические возможности спектрометров). Структура и спектры поглощения воды, в том числе в биологических объектах.

Тема 3. Применение методов электронной спектроскопии для биомедицины.

Методы электронной спектроскопии в медицине: основная схема фотофизических процессов, спектрально-люминесцентные свойства молекул межмолекулярные взаимодействия, сольватация молекул и ее спектральное проявление.

Teма 4. Спектроскопия комбинационного рассеяния света для аналитической диагностики в биомедицине.

Введение в спектроскопию комбинационного рассеяния. Техника спектроскопии комбинационного рассеяния.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, оценки лабораторных заданий, предполагающих самостоятельную работу по поиску, анализу, обработке информации, подготовке и оформлению результатов в форме отчетов.

Балльная оценка текущего контроля успеваемости студента по данной дисциплине составляет максимум 72 балла.

Таблица 9.1

No	Вид контроля	Количество	Количество	Сумма
Π/Π			баллов за 1	
			ед. контроля	
1.	Посещение лекций	8	1	8
2.	Выполнение лабораторных работ	8	8	64
	ИТОГО			72

Основным критерием балльной оценки текущего контроля успеваемости является **оценка качества выполнения лабораторной работы и подготовки отчета** (содержание ответа, полнота ответа, владение профессиональным языком).

Индикаторы балльной оценки лабораторной работы:

- 7-8 баллов ответ не содержит ошибочных расчетов, элементов и утверждений, максимально полно раскрывает суть каждого вопроса, составлен профессиональным языком, содержит выводы;
- 5-6 баллов в ответе допущены непринципиальные ошибки и неточности в расчетах, ответ содержит упущения, составлен профессиональным языком, содержит выводы;
- 3-4 баллов ответ содержит несколько ошибок в расчетах, упущения, содержание ответов не полное; составлен профессиональным языком, в выводах допущены неточности;
- 0-2 баллов ответ содержит многочисленные ошибки в расчетах, упущения, содержание ответов не полное; выводы отсутствуют.

Текущий контроль фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в третьем семестре проводится в письменной форме по билетам. Каждый экзаменационный билет состоит из двух теоретических вопросов по одной из тем дисциплины. Продолжительность экзамена 1,5 часа.

Примерный перечень теоретических вопросов

- 1. Общая схема фотофизических процессов в молекулах.
- 2. Теоретические основы и принципы ИК спектроскопии.
- 3. Основные законы дезактивации электронно-возбужденных состояний.
- 4. Структура молекулярных спектров.
- 5. Основные процессы в растворах.

- 6. Форма спектральной линии.
- 7. Приближение центрально симметричного поля.
- 8. Характеристики ИК-спектрометров.
- 9. Принципы работы дифракционного спектрометра.
- 10. Эффект Рамана.
- 11. Эмпирические правила: Гунда, Ланде, Лапорта.
- 12. Принцип работы Фурье-спектрометра.
- 13. Базовые элементы техники спектроскопии.
- 14. Спектрометр комбинационного рассеяния: принцип работы и основные элементы.
 - 15. Электронные переходы. Правила отбора.
 - 16. Структура и спектры поглощения воды.

К экзамену допускаются только те студенты, кто удовлетворительно выполнили все лабораторные работы.

Балльная оценка промежуточной аттестации (в форме экзамена) составляет максимум **28 баллов.**

Индикаторы балльной оценки ответа на экзамене:

- 22-28 баллов ответы на вопросы билета не содержат ошибочных элементов и утверждений, ответы на дополнительные устные вопросы экзаменатора содержательны и убедительны;
- 15-21 баллов в ответах на вопросы билета допущены непринципиальные ошибки и неточности, ответы на дополнительные устные вопросы экзаменатора содержат упущения;
- 8-14 баллов в ответах на вопросы билета допущены несколько принципиальных ошибок, ответы на дополнительные устные вопросы экзаменатора содержат упущения;
- 0-7 баллов ответы на вопросы билета имеют многочисленные ошибки, упущения или содержание ответов не имеет отношения к поставленному вопросу; ответы на дополнительные устные вопросы экзаменатора содержат ошибки.

Баллы, полученные на экзамене, суммируются с баллами, полученными по итогам текущего контроля. На основе итогового количества баллов выставляется оценка.

Соответствие 100-балльной шкалы оценок 4-альтернативной шкале оценок:

- 0-32 баллов «неудовлетворительно»,
- 32-55 баллов «удовлетворительно»,
- 55-78 баллов «хорошо»,
- 78-100 баллов «отлично».

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=3660
- б) Cherepanov V.N., Sinitsa L.N., Petrov D.V., Karlovets E.V. Optical methods in biomedicine. Study Guide, 2016.
- в) оценочные материалы текущего контроля и промежуточной аттестации по дисциплине;
 - г) примерные темы лабораторных работ:
- Лабораторная работа №1 «Качественный анализ элементного состава материалов».
- Лабораторная работа №2 «Спектроскопические базы данных. Макетирование газоанализатора метана в выдыхаемом воздухе».

- Лабораторная работа №3 «Исследование лекарственных препаратов методом ИК- спектроскопии».
- Лабораторная работа №4 «Определение характеристик электронных полос поглощения и электронных состояний с использованием аминокислотных остатков, входящих в состав белка (фенилаланин, триптофан, тирозин)».
- Лабораторная работа №5 «Сольватофлуорохромы флуоресцентных зондов, используемых в биофизике и медицине».
- Лабораторная работа №6 «Применение УФ и видимой областей спектра при анализе витаминов».
- Лабораторная работа №7 «Качественный анализ методом спектроскопии комбинационного рассеяния».
- Лабораторная работа №8 «Количественный анализ методом спектроскопии комбинационного рассеяния».

Лабораторная работа №1 «Качественный анализ элементного состава материалов». *Примеры заданий:*

- 1. Определение дисперсии стилоскопа.
- 2. Определение элементного состава неизвестной пробы.
- 3. Оформить отчет.

Лабораторная работа №2 «Спектроскопические базы данных. Макетирование газоанализатора метана в выдыхаемом воздухе».

Примеры заданий:

- Регистрация пользователя информационной системы. С помощью адреса http://spectra.iao.ru войти в информационную систему для моделирования инфракрасных спектров поглощения. Зарегистрироваться в ней, указав все свои данные.
 - 1. Ознакомиться с программой SPECTRA:
 - Получить спектр атмосферы (Диаграмму интенсивностей).
 - Получить спектр пропускания атмосферы в узком спектральном диапазоне.
 - 2. Выбор спектральных линий для контроля СО₂ в атмосфере.
- Составить газовую смесь (CO_2 -100%). Получить Диаграмму интенсивностей CO_2 .
 - Выбрать участок одной сильной полосы.
 - Получить спектр пропускания CO₂ при изменении температуры (77К...2000 К).
- Получить спектр пропускания CO_2 при изменении длины пути (1 мм, 1 см, 1м, 1 км).
 - Получить спектр пропускания CO_2 при изменении давления (0.1, 1, 20 атм)
- Получить спектр пропускания CO_2 при изменении спектрального разрешения (0.01, 1, 30 см $^{-1}$).
- Выбрать линии, перспективные для разработки газоанализатора на концентрацию 300 ppm (0.03 % в атмосфере).
- Использовать стандартную атмосферу ИОА или США, находящуюся в базе данных.
- Получить спектр пропускания смоделированной атмосферы в районе выбранных линий.
 - Провести окончательный выбор измерительных линий.

Основной критерий выбора — линии CO_2 должны быть достаточно сильными на фоне поглощения других линий атмосферного воздуха и не должны перекрываться с линиями атмосферного воздуха.

- Описать и объяснить полученные результаты.
- 3. Макетирование газоанализатора СН₄ в атмосфере.

- Составить газовую смесь (CH $_4$ -100%). Получить Диаграмму интенсивностей CH $_4$.
 - Выбрать участок сильной полосы.
- Выбрать линии, перспективные для разработки газоанализатора на концентрацию 1 ppm (0.000001 частей в атмосфере). (Параметры спектрометра: Спектральное разрешение 0.1 см-1, Давление 1 атм, Пропускание 10-90%, Разумная длина пути 1-100 м).
- Составить атмосферную газовую смесь (N_2 , 0_2 , CO_2 , $H_2O-1\%$, CH_4 0.0001%). Можно использовать стандартную атмосферу ИОА или США, находящуюся в базе данных.
- Получить спектр пропускания смоделированной атмосферы в районе выбранных линий.
 - Провести выбор участков.
 - Провести окончательный выбор измерительных линий.

(Основной критерий выбора — линии ${\rm CH_4}$ должны быть достаточно сильными на фоне поглощения атмосферного воздуха и не должны перекрываться с линиями атмосферного воздуха.

- Провести оптимальный выбор параметров спектрометра (пункт III.2) при их вариации.
 - Описать и объяснить полученные результаты.
 - Оформить отчет.

Лабораторная работа №3 «Исследование лекарственных препаратов методом ИКспектроскопии».

Примеры заданий:

- 1. Ознакомиться с экспериментальной установкой.
- 2. Приготовить анализируемую пробу лекарственных препаратов.
- 3. Зарегистрировать спектр фонового сигнала.
- 4. Зарегистрировать спектры образцов со спектральным разрешением 10 см⁻¹.
- 5. Ознакомиться со средой обработки цифровых данных «Origin».
- 6. Провести обработку полученных ИК спектров. Определить основные характеристические полосы поглощения.
- 7. Провести сравнение спектров поглощения исследуемых препаратов различных фирм-производителей и приведенных в фармакопейных статьях. Сделать вывод о содержании активного компонента.
 - 8. Оформить отчет.

Лабораторная работа №4 «Определение характеристик электронных полос поглощения и электронных состояний с использованием аминокислотных остатков, входящих в состав белка (фенилаланин, триптофан, тирозин)».

Примеры заданий:

- 1. Измерить спектры поглощения исследуемой молекулы в предложенных растворителях.
 - 2. Проверить выполнимость закона поглощения света
- 3. Определить характеристики электронных полос поглощения для предложенной молекулы:
 - а) длину волны и волновое число в максимуме полосы поглощения;
 - б) десятичный молярный коэффициент поглощения ε_{\max} ;
 - в) полуширину полосы $\Delta v_{1/2}$;
 - г) интегральную интенсивность полосы;
 - д) силу осциллятора электронного перехода;

- 4. Определить характеристики электронных состояний:
- а) тип состояния $S_1(\pi, \pi^*)$ или $S_1(n, \pi^*)$;
- б) время жизни возбужденного состояния.
- 5. Построить схему энергетических уровней молекулы в полярном и неполярном растворителях.
 - 6. Оформить отчет.

Лабораторная работа №5 «Сольватофлуорохромы флуоресцентных зондов, используемых в биофизике и медицине».

Примеры заданий:

- 1. Исследовать роль процессов сольватации в формировании спектра поглощения зондов.
- 2. Исследовать роль процессов сольватации в формировании спектра флуоресценции.
- 3. Приготовить растворы флуоресцентного зонда в растворителях различной полярности (протонодонорные, инертные, основные) с концентрациями зонда порядка 10 микромоля.
 - 4. Снять спектры поглощения и флуоресценции в выбранных растворителях.
- 5. Оценить сдвиг полосы поглощения и флуоресценции за счёт универсальных взаимодействий и водородной связи.
- 6. Изучить зависимость положения полосы флуоресценции от диэлектрической проницаемости, параметров кислотности и основности.
 - 7. Оформить отчет.

Лабораторная работа №6 «Применение УФ и видимой областей спектра при анализе витаминов».

Примеры заданий:

- 1. Проверка идентичности витаминов группы $B(B_6, B_{12}, B_1)$ различных производителей.
- 2. Анализ смеси витаминов B_6 , B_{12} , B_1 с использованием метода математического разложения спектра смеси по спектрам составляющих компонентов с известной концентрацией.
- 3. Приготовить водные растворы витаминов B_6 , B_{12} , B_1 различных производителей с концентрацией порядка миллимоля.
- 4. Подобрать концентрацию каждого витамина для получения спектра поглощения с величиной оптической плотности в интервале 0.1-0.5.
 - 5. Зарегистрировать спектры поглощения выбранных растворов.
- 6. Рассчитать десятичный молярный коэффициент поглощения характерной для каждого витамина области и проверить на идентичность витамины.
- 7. Зарегистрировать спектры поглощения витаминов B_6 , B_{12} , B_1 определенной концентрации и их смесей.
- 8. Используя программу RAZLOG оценить концентрацию каждого витамина в смеси.
 - 9. Оформить отчет.

Лабораторная работа №7 «Качественный анализ методом спектроскопии комбинационного рассеяния».

Примеры заданий:

- 1. Освоить методику регистрации спектров КР, а также получить представление о методике качественного анализа по спектру КР.
 - 2. Ознакомиться с экспериментальной установкой и провести ее юстировку.

- 3. Поскольку программное обеспечение позволяет задать границы сканирования монохроматора в нм, рассчитать требуемый спектральный диапазон для регистрации частотных сдвигов от -1000 см⁻¹ до 1000 см⁻¹. Стоит учесть, что длина волны лазера $\lambda = 473$ нм и это представляет частотный сдвиг 0 см⁻¹.
- 4. Получить от преподавателя две кюветы с неизвестными жидкостями и зарегистрировать их спектры КР.
- 5. Из полученных спектров KP определить в какой кювете находился CCl4. Для этого необходимо воспользоваться известным фактом, что CCl4 имеет в своем спектре KP четыре характерных колебательных полосы с частотными сдвигами: 218 cm^{-1} , 314 cm^{-1} , 459 cm^{-1} , 762 cm^{-1} .
 - 6. Определить температуру СС14 с помощью соотношения 1.24.
 - 7. Оформить отчет.

Лабораторная работа №8 «Количественный анализ методом спектроскопии комбинационного рассеяния».

Примеры заданий:

- 1. Освоить методику количественного анализа жидких или газовых сред с помощью спектроскопии КР путем использования процедуры разложения по базисным спектрам.
 - 2. Ознакомиться с экспериментальной установкой и провести ее юстировку.
- 3. Поскольку программное обеспечение позволяет задать границы сканирования монохроматора в нм, рассчитать требуемый спектральный диапазон для регистрации частотных сдвигов от -100 см $^{-1}$ до 3500 см $^{-1}$. Стоит учесть, что длина волны лазера $\lambda = 473$ нм и это представляет частотный сдвиг 0 см $^{-1}$.
- 4. Зарегистрировать и сохранить в памяти ПК спектры КР чистого ацетона, этилацетата и 1,4-диоксана.
- 5. Получить от преподавателя смесь данных компонентов и зарегистрировать ее спектр КР.
 - 6. Определить концентрации компонентов в смеси с помощью соотношения
 - 7. Оформить отчет.

Характерными показателями развития самостоятельности у студента в результате освоения дисциплины являются: теоретическое осмысление изучаемого материала, накопление необходимых умений и навыков, интерес к процессу создания продукта собственной самостоятельной деятельности, умение провести презентацию созданного продукта, умение отстаивать собственную точку зрения или предложенный вариант решения проблемы, рефлексия своей деятельности и результата.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Handbook of coherent-domain optical methods: biomedical diagnostics, environmental monitoring, and materials science [Electronic resource]/ ed. V. V. Tuchin. New York: Springer Science+Business Media, 2013. 1330 p. The electronic version of the printing publication. URL: http://link.springer.com/referencework/10.1007/978-1-4614-5176-1 (access date: 24.02.2022).
- 2. Bujalowski W. Spectroscopic methods of analysis: methods and protocols [Electronic resource] / W. Bujalowski. New York: Springer Science+Business Media, 2012. 397 p. (Methods in molecular biology, vol. 875). The electronic version of the printing publication. URL: http://link.springer.com/book/10.1007/978-1-61779-806-1. (access date: 24.02.2022).
- 3. Rolfe P. In vivo near-infared spectroscopy [Electronic resource] // Annual review of biomedical engineering. 2000. Vol. 2. P. 715–754. The electronic version of the printing

- publication. URL: http://www.annualreviews.org/doi/pdf/10.1146/annurev.bioeng.2.1.715 (access date: 24.02.2022).
- 4. Gould T. J. Optical nanoscopy: from acquisition to analysis [Electronic resource] / T. J. Gouls, S. T. Hess, J. Bewersdorf // Annual Review of biomedical engineering. 2012. Vol. 14. P. 231–254. The electronic version of the printing publication. URL: http://www.annualreviews.org/doi/abs/10.1146/annurev-bioeng-071811-150025 (access date: 24.02.2022).
- 5. Optical methods in biomedicine: Training manual/ ed. by V.N. Cherepanov. Tomsk: Publishing House of Tomsk state university, 2016. 201 p.
- 6. Atomic Spectroscopy and Radiative Processes electronic resource /by Egidio Landi Degl'Innocenti, Milano: Springer Milan: Imprint: Springer, 2014, XII, 430 p.
- 7. Optical Spectroscopy and Computational Methods in Biology and Medicine electronic resource / ed. by Malgorzata Baranska, Dordrecht: Springer Netherlands: Imprint: Springer, 2014, XII, 540 p.
- 8. Infrared Spectroscopy / ed. by J.M. Thompson. Singapore: Pan Stanford Publishing Pte. Ltd, 2018. 210 p.
- 9. Practical Fluorescence Spectroscopy / ed. by Z. Gryczynski, I. Gryczynski. CRC Press, Taylor & Francis Group, 2019. 792 p.
- 10. Advances in Near Infrared Spectroscopy and Related Computational Methods / ed. by C. Huck, K.B. Bec. Switzerland: MDPI, 2019. 498 p.
- 11. Review Near-Infrared Spectroscopy in Bio-Applications / K.B. Bec, J. Grabska, C.W. Huck. –Molecules. 2020. V. 25. A. 2948; doi:10.3390/molecules25122948.
- 12. Near-Infrared Applications in Biotechnology / ed. by R. Raghavachari. CRC Press, Taylor & Francis Group, 2020. 392 p.
- 13. Vibrational Spectroscopy Applications in Biomedical, Pharmaceutical and Food Sciences / by A.A. Bunaciu, H.Y. Aboul-Enein, V. Dang Hoang. Elsevier, 2020. 256 p.
- 14. Analytical Techniques in Forensic Science / ed. by R. Wolstenholme, S. Jickells, S. Forbes. John Wiley & Sons, Inc., 2020. 442 p.
- 15. Handbook of Near-Infrared Analysis / ed. by E.W. Ciurczak, B. Igne, J.Workman, Jr., D.A. Burns. CRC Press, Taylor & Francis Group, 2021. 938 p.
- 16. Nanomaterials for Spectroscopic Applications / ed. by K. Pal. CRC Press, Taylor & Francis Group, 2021.-374 p.

б) дополнительная литература:

- 1. Introduction to special issue: Biophysics of development /S.McFann: Biophysical journal, 2021, V. 120, Issue 19, E1-E5. (https://www.cell.com/biophysj/fulltext/S0006-3495(21)00773-6)/.
- 2. Physical phenotype of blood cells is altered in COVID-19 / M. Kubankova et al. Biophysical journal, 2021, V. 120, Issue 14, P. 2838-2847. (https://www.cell.com/biophysj/fulltext/S0006-3495(21)00454-9).
- 3. On distributions of barrier crossing times as observed in single-molecule studies of biomolecules / A.M. Berezhkovskii et al. Biophysical reports, 2021, V. 1, Issue 2, 100029 (https://www.cell.com/biophysreports/fulltext/S2667-0747(21)00029-X).
- 4. Advances in Micropipette Aspiration: Applications in cell biomechanics, models, and extended studies / B. Gonzalez-Burmudez, et al. Biophysical respective, 2019, V. 116, Issue 4, P. 587-594 (https://www.cell.com/biophysj/fulltext/S0006-3495(19)30020-7).
- 5. Mesoscale microscopy and image analysis tools for understanding the brain/ A. L. Tyso, Troy W. Margrie. Progress in Biophysics and Molecular Biology, 2022, V. 168, P. 81-93 (https://doi.org/10.1016/j.pbiomolbio.2021.06.013).
- 6. Tools and Trends in Bioanalytical Chemistry / ed. by L. T. Kubota, J. A. Fracassi da Silva, M. M. Sena, W. A. Alves. Switzerland: Springer, 2022. 558 p. The electronic

version of the printing publication. – URL: https://link.springer.com/book/10.1007/978-3-030-82381-8 (access date: 24.02.2022).

7. Light–Matter Interaction (A Crash Course for Students of Optics, Photonics and Materials Science) / ed. by O. Stenzel. – Switzerland: Springer, 2022. – 548 p. – The electronic version of the printing publication. – URL: https://link.springer.com/book/10.1007/978-3-030-87144-4 (access date: 24.02.2022).

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Professional Plus 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office Access, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.);
- пакет программ Origin (фирмы OriginLab Corporation) для численного анализа данных и научной графики, включая различные статистические операции и обработку сигналов.
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 3EC ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/
 - Google Scholar https://scholar.google.com/
 - в) профессиональные базы данных (при наличии):
- Информационная система SPECTRA (http://spectra.iao.ru) (для моделирования и визуализации молекулярных спектров поглощения атмосферных газов).
 - Oxford Medicine Online (https://oxfordmedicine.com/).
 - PubMed (https://pubmed.ncbi.nlm.nih.gov/).

14. Материально-техническое обеспечение

Для проведения лекционных и семинарских занятий используется лаборатория моделирования физических процессов в биологии и медицине (аудитория № 442 второго учебного корпуса ТГУ), оснащенная интерактивной доской, звуковым и видеооборудованием, мультимедийным оборудованием для демонстрации презентаций, ресурсов сети Интернет, других учебных материалов. Имеются персональные компьютеры студентов, с доступом к сети Интернет, в электронную информационнообразовательную среду и к информационным справочным системам.

Для проведения лабораторных работ используется материально-техническая база Сибирского физико-технического института им. акад. В.Д. Кузнецова.

15. Информация о разработчиках

Черепанов Виктор Николаевич, д-р физ.-мат. наук, профессор физического факультета ТГУ;

Аксенова Юлия Викторовна, канд. хим. наук, доцент физического факультета ТГУ;

Карловец Екатерина Владимировна, PhD, доцент физического факультета ТГУ; Петров Дмитрий Витальевич, канд. техн. наук, доцент физического факультета ТГУ.