Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ:

Декан физического факультета

С.Н. Филимонов

« M »

20 dl r.

Рабочая программа дисциплины

Физические поля в биологических системах

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки «Физические методы и информационные технологии в биомедицине»

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2022**

Код дисциплины в учебном плане: Б1.О.07

СОРЛАСОВАНО: Руководитель ОП

_В.П. Демкин

Председатель УМК

___О.М. Сюсина

Томск - 2022

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

— ОПК-1 — способен применять фундаментальные знания в области физики для решения научно-исследовательских задач, а также владеть основами педагогики, необходимыми для осуществления преподавательской деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-1.1. Знает основные направления развития современной физики и современные методики преподавания физических дисциплин.
- ИОПК-1.2. Анализирует и интерпретирует данные научного исследования с точки зрения современных физических концепций и теорий, умеет организовывать различные формы занятий по физическим дисциплинам.

2. Задачи освоения дисциплины

- Знакомство с биологической электродинамикой;
- знакомство с характеристиками взаимодействия электромагнитного поля с веществом;
- знакомство с источниками энергии живого организма и видами совершаемых им работ.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к обязательной части образовательной программы.

Дисциплина формирует у магистрантов представления о биофизических эффектах, характеризующих взаимодействие электромагнитного поля с биологическими объектами.

Полученные в рамках дисциплины компетенции необходимы для эффективной организации научно-исследовательской работы и написания выпускной квалификационной работы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 3, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины обучающиеся должны обладать навыками работы на компьютере и с графическими редакторами.

Специальные компетенции для освоения дисциплины не предусмотрены.

6. Язык реализации

Английский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- лекции: 12 ч.;
- семинарские занятия: 4 ч.
- лабораторные работы: 8 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Введение. Электромагнитное поле. Основные принципы и определения.

Структурно-функциональные характеристики биомедицинсцих систем. Биофизические методы. Фундаментальные проблемы структуры биомедицинских систем. Электромагнитное поле. Дуализм природы света. Фотометрические световые единицы. Основные физические константы. Вовлечение энергии которая возбуждает электрон в высшее электронный уровень является, на молекулярной шкале, достаточно большой, будучи намного больше, чем энергия вовлеченная в возбужденная, колебательное или вращательное многообразие молекулы.

Тема 2. Спектральная область фотобиологических процессов.

Поперечная электромагнитная волна. Дуализм природы света. Энергия. Шкала электромагнитных волн. Классическое и квантовое представление испускания света. Лампы. Лазеры. Типичные значения времени жизни возбужденных атомов. Единицы длин волн.

Тема 3. Функционально-физиологические процессы и реакции, протекающие под действием света. Деструктивно-модификационные реакции.

Рецепторы человеческого организма, перенос энергии, вещества и информации в биологических системах. Структура нативного состояния. Уровни организации белковых молекул и их устойчивость. Конформационные превращения. Физические свойства природных аминокислот.

Тема 4. Основные принципы биотехнических систем.

Метки и зонды. Флуоресцентные сенсоры. Хемилюминесценция. Биолюминесценция. Бактериальная биолюминесценция.

Тема 5. Взаимодействие электромагнитного поля с биологическими системами. Квантовая природа света, формула Планка, соотношение между энергией кванта, длиной волны, частотой излучения. Корпускулярно-волновой дуализм. Квантово-механическая модель энергетических состояний атомов и молекул.

Квантовая теория. Уравнение Шредингера. Кинетическая и потенциальная энергии системы. Геометрическое представление круговых орбит. Схема термов атома. Электронные оболочки.

Q-MP2-OS: новый подход к корреляции с использованием квадратуры. Поляризуемое встраивание плотности для белков: возбужденные состояния в сложных биологических средах. Моделирование слабых взаимодействий в биологических системах со сферическими атомными электронными плотностями.

Тема 6. Воздействие электромагнитных полей СВЧ, радио- и терагерцового диапазонов на живые системы.

Инфракрасная спектроскопия. Инфракрасный спектрометр. Спектр некоторых компонентов крови.

Тема 7. Воздействие электромагнитных полей оптического диапазона на живые системы. Фотобиологические процессы, протекающие в биологических тканях. Лазеры в медицине.

Термины. Фотофизические процессы, протекающие в молекуле. Механизмы флуоресценции. От диаграммы энергии к спектрам. Схема Яблонского. Влияние растворителя. Взаимодействие молекул и влияние на спектры. Измерение флуоресценции: флуориметр. Линейность флуоресцентного сигнала. Мутные образцы и измерение при низких температурах. Поляризация и анизотропия. Тушение флуоресценции.

Тема 8. Физиологические аспекты ионизирующее излучение в диагностике и лечении живых систем.

Рентгеновские лучи. Кинематическая теория рассеяния рентгеновского излучения. Виды реакций с участием нейтронов.

Тема 9. Основные оптические методы исследования биологических объектов: абсорбционная спектроскопия видимого и ультрафиолетового света, флуоресцентная спектроскопия, круговой дихроизм и дисперсия оптического вращения, ИК- и Раманспектроскопия. Качественный и количественный спектрофотометрический анализ.

Общие сведения. Инструментарий: флуоресцентная спектроскопия, ИК- и Раманспектроскопия. Круговой дихроизм и дисперсия оптического вращения.

Тема 10. Применение спектральных методов в экспериментальной биологии и медицине.

Виды оптической спектроскопии. Оптика в спектроскопии. Дифракционные решетки. Призмы. Монохроматоры. Фотодетекторы. Закон Бугера-Ламберта-Бера. Отклонения от закона. Фотометрические ошибки. Измерение мутных образцов. Поглощающие свойства молекул. Комплексы с переносом заряда. Модификация спектров поглощения. Дифференциальная спектрофотометрия. Спектрофотометры. Химическая связь, спектроскопия ядра и магнитные свойства актинидных комплексов. Погоня за точностью в межмолекулярных потенциалах и спектрах. Молекулярные свойства и взаимодействия: замечательная площадка для теоретика и экспериментатора.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, оценки отчетов по лабораторным работам, ответов в устной форме во время проведения семинара, реферата.

Балльная оценка текущего контроля успеваемости студента по данной дисциплине составляет максимум **100 баллов**.

Таблица 9.1

№	Вид контроля	Количество	Количество	Сумма
Π/Π			баллов за 1	
			ед. контроля	
1.	Посещение лекций	6	1	6
2.	Работа на семинаре	2	2	4
3.	Выполнение лабораторных работ	2	20	40
4.	Выполнение реферата	1	50	50
	ИТОГО			100

Основным критерием балльной оценки текущего контроля успеваемости является оценка качества ответа студента по содержанию лабораторной работы, семинара, проектного задания (в форме реферата) (полнота и точность ответа, содержательность суждений/ решений практических задач, практическое использование полученных знаний, умений, убедительность и доказательность ответа, владение профессиональным языком).

Текущий контроль фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в третьем семестре проводится в устной форме по билетам. Каждый экзаменационный билет состоит из двух теоретических вопросов. Продолжительность экзамена 1,5 часа.

Примерный перечень теоретических вопросов:

- 1. Физические поля. Источники физических полей.
- 2. Явление флуоресценции. Стоксов сдвиг в протеине.
- 3. Биологическое действие тепловой энергии. Действие электрических токов.
- 4. Флуоресцентные пробы.
- 5. Информация молекулы от поглощения и флуоресценции.
- 6. Действие на биоструктуры токов с разными динамическими характеристиками.
- 7. Биохимические флуорофоры.
- 8. Влияние магнитных полей на биологические объекты.
- 9. Действие переменных магнитных полей на биологические среды. Спектрофотометр.
- 10. Электронный парамагнитный резонанс.
- 11. Ядерный магнитный резонанс.
- 12. Типы физических полей.
- 13. Биологические системы. Акустические поля.
- 14. Перенос энергии от тирозина к триптофану.
- 15. Характеристики ионизирующего излучения.
- 16. Влияние акустических полей на биологические объекты.
- 17. Влияние электромагнитного излучения в оптическом диапазоне.
- 18. Фотофизические процессы и фотохимические реакции в возбужденных электронных состояниях.
- 19. Поглощение света биомолекулой.
- 20. Спектры поглощения и химическая структура биологически важных соединений.

К экзамену допускаются только те студенты, кто удовлетворительно выполнил все практические /лабораторные задания.

Оценивание ответа студента на экзамене:

Оценка	Критерий оценивания			
	Б	Д	P	
5				
4				
3				

Полный развернутый ответ или реферат выполнен	
Неполный ответ	
Фрагментарный ответ	
Отсутствие ответа или реферат не выполнен	

Здесь: Б – вопросы по билету; Д – дополнительные вопросы; P – реферат; 5 – отлично; 4 – хорошо; 3 – удовлетворительно.

Неудовлетворительная оценка соответствует всем иным случаям, не указанным в таблице.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=2954
- б) оценочные материалы текущего контроля и промежуточной аттестации по дисциплине;
 - в) примерные темы лабораторных работ:
 - Лабораторная работа № 1 «Введение во флуоресценцию».
- Лабораторная работа № 2 «Воздействие ультрафиолетового излучения на водные растворы органических молекул».
 - г) примерная тематика семинарских занятий:
 - Семинарское занятие № 1 «Применение лазеров в медицине».
 - Семинарское занятие № 2 «Фотодинамическая терапия. Фотосенсибилизаторы».

Семинарское занятие № 1 «Применение лазеров в медицине» (2 часа). *Вопросы:*

- Принцип работы лазера. Типы лазеров.
- Какими параметрами лазерного излучения можно управлять?
- Действие лазерного луча на организм с человеком.

Сценарий проведения семинарского занятия с технологией смешанного обучения:

- 1. Студенты группы, записанные на курс, получают по электронной почте задание: самостоятельно изучить главу учебника Избранные главы к курсу _Физические поля и их действие на биосистемы .pdf
 - 2. В разделе учебника представлен список тем для рефератов.
- 3. Каждый студент выбирает тему для реферата. Изучает самостоятельно с помощью электронных ресурсов материалы темы и готовит презентацию и доклад. Староста группы назначается координатором программы зум конференции, создает папку в Google хранилище и следит, чтобы темы докладов и рецензий не повторялись. Возможна подготовка доклада в команде.
 - 4. Студент загружает презентацию в Google хранилище.
- 5. Староста уточняет дату (ZOOM) семинарского занятия, согласует со студентами группы последовательность и время выступления, назначает руководитель заседания конференции.
- 6. Каждый студент должен подготовить по одному вопросу для выступающего заранее. Выбор темы для рецензии и согласование в Google документах.
- 7. После проведения ZOOM конференции каждый студент пишет рецензию к одному из рефератов, оценивая как размещенные на форуме материалы, так и выступление на конференции. Рецензии размещаются в Google документах. Студенты знакомятся с отзывами. Происходит рефлексия. Выбор лучшего выступления.
- 8. Студенту преподаватель высылает по электронной почте научную статью, студенту необходимо понять смысл исследования и ответить на вопрос: какая лазерная система используется. Затем преподаватель оценивает ответ.

Инструкция для студента:

1. Изучить главу учебника Избранные главы к курсу _Физические поля и их действие на биосистемы_.pdf. Определить непонятные термины, составить глоссарий, определить типы и характеристики лазеров и лазерных систем, используемых в медицине. Посмотреть электронные ресурсы.

- 2. В разделе задания к главе выбрать тему реферата и занести в программу в папке Google документов для зум конференции.
 - 3. Подготовка презентации.
 - 4. Загрузка презентации в Google хранилище
 - 5. Согласование со старостой времени доклада. Выбор руководителя заседания.
- 6. Просмотр и критический анализ всех презентаций, составление вопросов к докладчикам. Выбор темы для рецензии. Согласование в Google документах.
- 7. Написание рецензии. Знакомство с рецензиями других студентов. Студент может оставить свои комментарии в Google хранилище.
 - 8. Изучение статьи и ответ на вопрос оставляется в Google папке.

Критерии оценивания

Критерий	0 баллов	1 балл	2 балла
Определение	Не определена	Определена хотя	Определены все
основных	хотя бы одно	бы одна	характеристики
характеристики	характеристика	характеристика	лазерного
лазерного	лазерного	лазерного	излучения
излучения	излучения	излучения	
Описание	Нет понимания	Определены два	Определены все
основных частей	основных частей	или три элемента	элементы лазерных
лазерных систем	лазерных систем	лазерных систем	систем
Вредные факторы	Не выявлены	Приведены 1 или 2	Приведены и даны
лазеров	вредные факторы	вредных фактора	понятия вредных
			факторов
Описание	Не описана	Нет понимания	Полное описание
характеристик	лазерная система	почему	лазерной системы и
лазерной системы	для лечения	используется	понимание почему
для лечения	заболевания	данная лазерная	она используется
конкретного		система для	для лечения
заболевания		лечения	заболевания
		заболевания	
Применение	Не определены	Слабо определены	Критическое
лазеров в	лазеры, которые	характеристики	осмысление
диагностике	применяются в	лазеров, которые	применения
заболеваний	диагностике	используются в	лазеров для
	заболеваний	диагностике	диагностик
		заболеваний	

Семинарское занятие № 2 (2 часа). «Фотодинамическая терапия. Фотосенсибилизаторы».

Вопросы:

- Фотодинамическая терапия. Основные недостатки и преимущества.
- Фотосенсибилизаторы.

Литература по темам семинаров:

- 1. Поисковые системы Google (google.com)
- 2. Ресурсы Научной библиотеки ТГУ http://lib.tsu.ru/ru/node/1290

Примерная тематика лабораторных работ с примерами заданий

Лабораторная работа №1 «Введение во флуоресценцию»

Примеры заданий:

- Приготовление образца для исследования.
- Снятие спектров поглощения и флуоресценции.
- Построение и обработка спектров.
- Анализ спектральных данных.
- Построение зависимостей интенсивности поглощения и флуоресценции от концентрации вещества.
 - Определение силы осциллятора и времени жизни электронных состояний.
 - Построение схемы Яблонского.

Литература по теме лабораторного занятия

1. Optical methods in biomedicine/Training manual ed. by Cherepanov V.N. – Tomsk: Publishing house of Tomsk State University. – 2016. – 202 p.

Лабораторная работа № 2 «Воздействие ультрафиолетового излучения на водные растворы органических молекул».

Примеры заданий:

- Описание схемы спектрофлуориметра.
- Получение и анализ спектров флуоресценции выбранных объектов в различных растворителях.
- Построение зависимостей интенсивности испускания органических молекул от длины волны возбуждения.
- Сравнение спектров испускания органических молекул при комнатной температуре и при 50 $^{\circ}\mathrm{C}$.
 - Расчет квантового выхода флуоресценции.

Литература по теме лабораторного занятия

1. Лабораторная работа «Исследование спектрально-люминесцентных свойств смеси органических молекул» : методические указания / [сост.: Чайковская О. Н., Петрова А. Ю., Аслаповская Ю. С.]; Том. гос. ун-т. - Томск: [б. и.], 2014. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000472762

Темы рефератов (планируются в часах самостоятельной работы студентов)

- 1. Круговой дихроизм и оптическое вращение. Исследование инсулина.
- 2. Исследование жира с помощью спектроскопии ослабленного полного отражения.
- 3. Поглощательные характеристики биологических молекул (триптофан, каротин, гуанин, цитозин, тимин и др.).
 - 4. Тушение флуоресценции молекулярным кислородом.
 - 5. Флуоресцентный спектр сыворотки человека.
 - 6. Экспериментальное определение времени жизни флуоресценции.
 - 7. Поляризация амфифлафина.
 - 8. Определение внутриклеточного кальция с помощью флуоресцентной метки.
 - 9. Флуоресцентная метка ДНК 2-аминопурин.
 - 10. Взаимодействие Кризена и гуминовых веществ с помощью флуоресценции.
 - 11. Флуоресцентные мембранные зонды для визуализации и нейронауки.
- 12. Фотохромные индикаторы кальция на основе реверсивно переключаемых флуоресцентных белков.
- 13. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects.
 - 14. Molecules driven by light: Electron and nuclear dynamics.

- 15. Электронная структура биологических систем.
- 16. Действие высоэнергетического излучения на живые организмы.
- 17. Effects of the environment upon the properties of Ca cation.
- 18. Temperature-sensitive fluorescence decay kinetics of Thioflavin T derivatives in glycerol.
 - 19. Photochromic Labels as a New Challenge for Nanophotonics and Medicine.
- 20. Features two-photon microscopy for analysis fluorescent properties of elastin fibers rats in vivo.
- 21. The study of jung's module variations in a phantom model of lymphedematous tissue using optical coherent tomography.

Требования к реферату

В реферате на основе всестороннего анализа литературы, интернет-источников магистрант должен максимально полно и глубоко исследовать выбранную тему, с учетом общей направленности программы обучения. В целом, при оформлении реферата (текста, рисунков, таблиц, формул) следует ориентироваться на требования ОСТ 29.115-88 «Оригиналы авторские и текстовые издательские. Общие технические требования». Объем реферата должен составлять не менее 10 страниц формата А-4, представляемой в электронной форме (формат doc, rtf или pdf). Обязательно указывается список использованных источников.

Характерными показателями развития самостоятельности у студента в результате освоения дисциплины являются: теоретическое осмысление изучаемого материала, накопление необходимых умений и навыков, интерес к процессу создания продукта собственной самостоятельной деятельности, умение провести презентацию созданного продукта, умение отстаивать собственную точку зрения или предложенный вариант решения проблемы, рефлексия своей деятельности и результата.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Podgoršak E. B. Radiation physics for medical physicists [Electronic resource] / E. B. Podgoršak. Berlin: Heidelberg: Springer-Verlag, 2006. 437 p. The electronic version of the printing publication. URL: http://link.springer.com/book/10.1007/3-540-29471-6 (access date: 22.02.2022).
- 2. Magnetic resonance imaging in laboratory petrophysical core analysis [Electronic resource] / J. Mitchell [et al.] // Physics reports. 2013. Vol. 526, is. 3. P. 165-225. The electronic version of the printing publication. URL: http://www.sciencedirect.com/science/article/pii/S0370157313000185 (access date: 29.02.2016).
- 3. Ha S. D. Adaptive oxide electronics : a review [Electronic resource] / S. D. Ha, S. Ramanathan // Journal of applied physics. $-2011.-Vol.\ 110$, is. $7.-Art.\ No.\ 071101.-The$ electronic version of the printing publication. URL: http://scitation.aip.org/content/aip/journal/jap/110/7/10.1063/1.3640806 (access date: 29.02.2022).
- 4. Ide-Ektessabi A. Applications of synchrotron radiation: micro beams in cell micro biology and medicine [Electronic resource] / A. Ide-Ekressabi. Berlin: Heidelberg: Springer-Verlag, 2007. 218 p. The electronic version of the printing publication. URL: http://link.springer.com/book/10.1007/978-3-540-46427-3 (access date: 29.02.2021).
- 5. Чайковская О.Н., Бочарникова Е.Н., Чайдонова В.С. Избранные главы к курсу "Физические поля и их действие на биосистемы": учебно-методическое пособие. Томск: Издательский Дом Томского государственного университета, 2020. 96 с.

- б) дополнительная литература:
- 1. Principles of fluorescence spectroscopy / ed. J. R. Lakowicz. New York: Springer Science+Business Media, 2006. 954 p. The electronic version of the printing publication. URL: http://link.springer.com/book/10.1007%2F978-0-387-46312-4 (access date: 26.02.2016).
- 2. Weatherhead S. C. Spectral effects of UV on psoriasis [Electronic resource] / S. C. Weatherhead, P. M. Farr, N. J. Reynolds // Photochemical & Photobiological Sciences. 2013. Vol. 12. P.47–53. The electronic version of the printing publication. URL: http://pubs.rsc.org/en/content/articlehtml/2013/pp/c2pp25116g (access date: 26102.2021).
- 3. Effect of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review [Electronic resource] / L. R. Sklar [et al.] // Photochemical & Photobiological Sciences. 2013. Vol. 12. P.54–64. The electronic version of the printing publication. URL: http://pubs.rsc.org/en/content/articlehtml/2013/pp/c2pp25152c (access date: 26.09.2021).
- 4. Optical methods in biomedicine/Training manual ed. by Cherepanov V.N.. Tomsk: Publishing house of Tomsk State University. 2016. 202 p.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Professional Plus 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office Access, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook):
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.);
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 3EC ZNANIUM.com https://znanium.com/
 - 3EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Для проведения лекционных и семинарских занятий используется лаборатория моделирования физических процессов в биологии и медицине (аудитория № 442 второго учебного корпуса ТГУ), оснащенная интерактивной доской, звуковым и видеооборудованием, мультимедийным оборудованием для демонстрации презентаций, ресурсов сети Интернет, других учебных материалов. Имеются персональные компьютеры студентов, с доступом к сети Интернет, в электронную информационнообразовательную среду и к информационным справочным системам.

Для проведения лабораторных работ используется материально-техническая база Сибирского физико-технического института им. акад. В.Д. Кузнецова.

5. Информация о разработчиках

Чайковская Ольга Николаевна, доктор физико-математических наук, профессор кафедры оптики и спектроскопии ТГУ, заведующая лабораторией фотофизики и фотохимии молекул.